APPENDIX C

SEISMIC SCREENING FORM SEISMIC SCREENING INVENTORY FORM

2020 Labieux Vehicle Storage and Sign Shop City of Nanaimo Bldg No. B23

Comments:

- Steel Column with Wood Beams
 Reinforced Concrete Shear Walls at North
 - Reinforced Concrete Shear Walls at North and South Walls
 - 5 meter high exterior concrete block walls.
 - Concrete block interior partition walls in south half of building (full height)
 - wood joist and diagonal shiplap sheathing
 - Interior Concrete partitions incorporate steel
 - most of interior partition walls done as a renovation to original.

						<u></u>		<u> </u>			Don
SEISMI	C SCF	REEN	ING FORM						p. 1 of 2	ITEM No.:	B23
Address: 2	2020	La	bieux				al Code:∨		Bldg. Nar		
No. of stor		1/2	Total Floor Area:				Year Built:		Design N		<u>,5 </u>
Primary us	se (see	list on	p. 2): Office	¿ mo	nu	fa	cturing	Heritage	Designatio		
Inspector:	(GK.	Da	te: A	pri	1/	13/20	2/2	Checked	by:	
	-		attached					Se	e atta	ched	
TUDE OF OTOL	ICTUDE	/circle er	propriate descriptors) s	ee 4.3.2	<i>S</i> вм	ketc		REGULARITIES	G (circle appro	opriate descriptors	Photo see 4.3.3
Wood	WLF WPB	Wood	Light Frame Post and Beam		90	1.\	/ertical rregularity	Abrupt cha (e.g. setba	inges in plan ick or buildin	dimensions ove g on hill)	r height
Steel	SMF SBF SLF SCW	Steel Steel Steel Steel Walls	Moment Frame Braced Frame Light Frame Frame with Concrete	Shear	90	3.	Horizontal Irregularity (Torsion) Short Concrete Columns Soft Storey	eccentric s one side o Short colu walls (stru	stiffness in plant f building) mns restrain ctural or infill	es such as "L", "\ an (e.g. shear wa ed by partial stor) or deep spands	all on only ey height els
Concrete	CMF CSW CIW PCF PCW	Concr Concr Shea Preca	ete Moment Frame ete Shear Walls ete Frame with Infill M Ir Walls st Concrete Frame st Concrete Walls	Masonry	85	5.	Pounding Major Modifi-	discontinu Separation 20 Z _v x no	ous shear want but between but of storeys (alls, openings, et uildings less than	which
Masonry	RML RMC URM	with or Re Reinfo with Unrei	orced Masonry Bearin Wood or Metal Deck oofs orced Masonry Bearin Concrete Diaphragms oforced Masonry Bear Building	Floors ng Walls s	90	7. 8.	Deterioration None	building is steel, rotte	apparent (co ed wood, poo	e damaged, pool orroded reinforce or concrete or ma es listed above i	ement or isonry)

NON - STRUCTURAL HAZARDS (Circle appropriate descriptors) see 4.3.4

F₁ Falling Hazards to Life:

Exterior: Masonry chimneys, parapets, veneer or stone / precast panels, non-safety glass, or canopies over exits and walkways Interior: Heavy components; masonry partitions; non-safety glass in egress areas; storage shelves which may collapse onto areas of human occupancy

F2 Hazards to Continuous Operation of Special Buildings: Equipment or lifetines required for continuous operation of special facilities. The owner or authority should provide a list of critical items needed for continuing operations.

	SEISMIC S												p. 2 c	7	<u> </u>	M No.: 1	
	SEISMIC PRIO	RITY INDEX:	Circle	appr	opria	te val	lue and e	nter e	ach resu	ılt on r	ight	side. U	se aster	isk (*) with	uncertain	values
	*	Design		Effective Seismic Zone (Z _V , or Z _V + 1 if Z _a > Z _V)							-						
		NBC	2			3			4		5			6		A= 2	
Α	Seismicity	Pre - 65		1.0			1.5			2.0			3.0		4.		A = 44
		65 - 84		1.0		ĺ	1.0		1	1.3			1.5 1.0		2.		
		Post - 85		1.0		<u></u>	1.0						1.0				
		Design		•		01.0	. O. II	T-	Soil Ca			Vone	Soft or	\neg	link	nown	
В	Soil	NBC		ck or If Soil			f Soil 50 m		Soft So > 15 m				able Soil			Soil	B = 1.3
	Conditions	Pre - 65		1.0		Q	1.3		1.5 1.0				.0 .5			.5 .5	
_		Post - 65		1.0			Constru	ction		d Sym	hol (s						
	*	Design	Wo	od I		Ste		-	ncrete		cast				Maso	nrv	
	Type of	NBC									PCV	Itlitti		RML, RMC URM		c=2.5	
С	Structure		WLF	-			SBF SCW	-			2.0	-	3.0		.5)	3.5	
	(BM = Benchmark	Pre - 70 70 - BM	1.2	2.0	1.0	1.2	1.5 2.0 1.5 1.5	2.5 1.5	1.5	2.5 1.8	1.5		2.0	1	.5	3.5	
	year, see p.1)	Post - BM	1.0	1.0	1.0	1.0	1.0 1.0	1.0	1.0	1.0	1.0		0.1		.0		
		Design NBC	1. Ve	rtical	2. H	oriz.	3. Shor	te	4 .Soft		5. Indin		Aodifi- ation	7. D		8. None	D = product of circled
D	Building Irregularities						Column	18	Storey 2.0	-	.3	-	.3	1.3		(1.0)	Numbers (Max of 4.0) =
	mogalariso	Pre - 70 Post - 70	1.		1. 1.		1.5 1.5	8 2	1.5	- 1	.3	1	1.0	1.3	- 1	1.0	1
=		D i	1	0		Г	Normal	一	Scho	ool, or		Post D	isaster,	or	Sp	ecial	
	Building	Building NBC		Low Occupancy N < 10		I Occupancy i		High Oc $N = 30$	ligh Occupancy N = 301 - 3000		Very High Occup. N > 3000			Operational Requirements		E= 1	
	Importance	Pre - 70		0.7			(1.0)		1.				2.0			1.0	- 1
E		Post - 70		0.7		L	1.0		1.				1.5 x : .5			2.0	
_	N = Occupied /	Area x Occup	ancy l	Densil O	y x D relinar	uration	on Factor ensity	. ≃ " ∆	verage V	⊋ X . ∕eeklv ł	lours					36	
	Primary Use:		u .		Pers	ons /	m ²	(of Human	Occup	ancy		×				ual to the s of human
	Assembly Mercantile, Per	rsonal service				1 0.2			50	- 50 - 80				occu	pancy	divided b	y 100, not
	Offices, Institu Residential	tional, Manufa	acturing)	(0.1).05			1	- 60 100				great	er tha	n 1.0	
=	Storage			12 m ()		- 0.0	******************************	New W		100					₩ Γ,	21	, ,
S	STRUCT	URALIN	DEX	= 7	4 · E	3 • (; • D • I						31200			SI =	6.5
	NON - STRUC	TURAL HA	ZARI	DS	D	escri	ption (sec	e p. 1				No		Yes		Yes *	F = max (F ₁ , F ₂)
F	F ₁ Falling Haza	ards to Life								- 7.0 N st - 70		1.		3.0 2.0		6.0 3.0	
	F2 Hazards to Vital Operations Any Year 1.0 3.0 6.0						3										
* applies only if one or more of the following descriptors on page 1 are circled: SMF, CMF, soft storey, torsion																	
N	NSI NON-STRUCTURALINDEX = B.E.F.= NSI = 3.9																
SI	PI SEISMIC	PRIORI	ry IN	IDE:	(=	SI	+ NSI									SPI =	10.4
-	Comments: Medium Priority																
		Me	ediu	m	ro	101	TITY								7.		1.1.
	Due to and	amou	nt	of	2 7	fu	11 he	219	ht.	CON	101	et	e b	100	K .	par	TITIONS
	and	concre	etc	S	she	ar	W	alt	s E	ouil	di	ng	Sho	rld	P	ErTOR	m wel

From: Manual for Screening of Existing Buildings for Seismic Investigation, IRC / NRC, Canada, Ottawa, September 1992

SEIS	MIC SCREENING INVENTORY FOR	RM Attac	h asterisks	(*) to unce	rtain values	Page No.:
Item No.	Address and/or Name of Building	Structural Index	NSI Non- Structural Index	SPI Seismic Priority Index	Priority for Evaluation	Comments
				·		
		-				,
	A CONTRACTOR OF THE PROPERTY O					
	,					
		-				

From: Manual for Screening of Existing Buildings for Seismic Investigation, IRC / NRC, Canada, Ottawa, September 1992

2020 Labieux Vehicle Storag and Sign Shop B23 SCALE 1:387

20 FEET

B23 WEST VIEW

B23 SOUTHWEST VIEW

INTERIOR CONCRETE BLOCK PARTITIONS

B23 SOUTHEAST VIEW

APPENDIX "G" BUILDING COST ANALYSIS CITY OF NANAIMO VEHICLE STORAGE & SIGN SHOP 2020 LABIEUX ROAD

APPRAISAL BUILDING #: GROSS FLOOR AREA:

B23 7,850 FT²

CLASS:

C & D

EFFECTIVE DATE: FYEAR(S) BUILT:

FEBRUARY 8, 2008 CIRCA 1965

BELOW GRADE ASSETS	CRN	CRNLD
EXCAVATION, BACKFILL AND SITE PREPARATION:	25,300	11,100
FOUNDATIONS:	18,700	8,300
ARCHITECTURAL OR ENGINEERING FEES:	3,100	1,400
TOTAL BELOW GRADE ASSETS:	47,100	20,800

ABOVE GRADE ASSETS		
BUILDING FRAMING:	21,900	9,600
FLOOR STRUCTURE:	67,500	29,800
INTERIOR CONSTRUCTION, MEZZANINES, STAIRS:	143,000	63,100
FLOOR AND CEILING FINISHES:	-	-
PLUMBING SYSTEM, FIXTURES, AND SEWERAGE:	2,300	1,000
HEATING, VENTILATION AND AIR CONDITIONING:	50,600	22,300
ELECTRICAL AND LIGHTING:	33,800	15,000
EXTERIOR WALL CONSTRUCTION, BALCONIES:	138,200	61,100
ROOF STRUCTURE, ROOF COVERING, AND CANOPIES:	33,800	15,000
FIRE PROTECTION:	-	-
ELEVATORS:	-	-
ADDITIONAL CONSTRUCTION:		-
ARCHITECTURAL OR ENGINEERING FEES:	35,900	15,900
TOTAL ABOVE GRADE ASSETS:	527,000	232,800

TOTAL BELOW AND ABOVE GRADE	ASSETS:	574,100	253,600
	*		

BUILDING CODES & BYLAWS			
PARKING SPACES	MEETS CODE	1=	
SPECIAL NEEDS ACCESS	MEETS CODE	=	-
FIRE PROTECTION	MEETS CODE		
TOTAL BUILDING CODES & BYLAWS:		-	-

TOTAL YARD IMPROVEMENTS:	21,300	21,300

TOTAL CRN COST:	595,400	274,900
	020/.00	,,,,

FOUNDATIONS: REINFORCED CONCRETE FOUNDATIONS FRAMING: LOAD BEARING MASONRY & WD FRAME WALLS, PART STL COLUMNS FLOOR STRUCTURE: REINFORCED CONCRETE SLAB ON GRADE, NO FINISH **INTERIOR CONSTRUCTION:** PAINTED CONCRETE BLOCK WALLS, EXPOSED ROOF DECK **PLUMBING SYSTEM:** MINIMAL FIXTURES & SERVICE FOR OCCUPANCY (SINGLE SINK ONLY) H.V.A.C.: **RADIANT & FORCED AIR HEAT ELECTRICAL AND LIGHTING:** STANDARD FIXTURES & TYPICAL SERVICE FOR OCCUPANCY **EXTERIOR WALLS:** PART PAINTED CONCRETE BLOCK, PART WD SIDING ON WD FRAME

EXTERIOR WALLS: PART PAINTED CONCRETE BLOCK, PART WD SIDING ON WD FRAM WOOD JOIST & WOOD DECK WITH BUILT-UP ROOFING

FIRE PROTECTION:

WOOD JOIST & WOOD DECK WITH BUILT-UP ROOFING
NIL

ELEVATORS: NIL
ADDITIONAL CONSTRUCTION: SITE IMPROVEMENTS