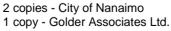
September 4, 2015


COLLIERY DAMS, NANAIMO, BC

Auxiliary Spillway - Preliminary Design Report

Submitted to: Toby Seward City of Nanaimo 455 Wallace Street Nanaimo, BC V9R 5J6

REPORT

Report Number: 1314470516-032-R-Rev0 Distribution: 2 copies - City of Nanaimo

Table of Contents

INTRO	DUCTION	1
GEOT	ECHNICAL ENGINEERING	1
2.1	Geotechnical Investigations	1
2.1.1	Test Pit Investigation	1
2.1.2	Borehole Investigation	1
2.1.3	Monitoring Well Installations	2
2.1.4	Water Level Monitoring	2
2.1.5	Laboratory Testing	3
2.2	Interpreted Geotechnical Conditions	3
2.2.1	Topsoil	3
2.2.2	Silt with varying sand and gravel	4
2.2.3	Gravel, some sand to gravelly Sand	4
2.2.4	Sand, trace gravel to gravelly	4
2.2.5	Clayey Silt to Silty Clay, trace sand to sandy	5
2.2.6	Silty Sand to Silt and Sand	5
2.2.7	Till-like Soils	6
2.2.8	Bedrock	6
2.3	Geotechnical Design and Construction Issues	7
HYDR	OTECHNICAL ENGINEERING	8
3.1	Design Flow	8
3.2	Labyrinth Spillway Design	8
3.3	Forebay	11
3.4	Downstream Channel	11
3.5	Low Level Outlets	12
STRU	CTURAL ENGINEERING	13
AESTH	HETICS AND LANDSCAPE DESIGN	14
FURT	IER WORK	14
CLOS	URE	15
	GEOT 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.7 2.2.8 2.2.7 2.2.8 2.2.7 2.2.8 2.3 4 1200 2.2.7 2.2.8 2.3 3.1 3.2 3.3 3.4 3.5 5TRU0 AESTI FURTI	GEOTECHNICAL ENGINEERING 2.1 Geotechnical Investigations 2.1.1 Test Pit Investigation 2.1.2 Borehole Investigation 2.1.3 Monitoring Well Installations 2.1.4 Water Level Monitoring 2.1.5 Laboratory Testing 2.2 Interpreted Geotechnical Conditions 2.2.1 Topsoil 2.2.2 Silt with varying sand and gravel. 2.2.3 Gravel, some sand to gravelly Sand 2.2.4 Sand, trace gravel to gravely. 2.2.5 Clayey Silt to Silty Clay, trace sand to sandy 2.2.6 Silty Sand to Silt and Sand. 2.2.7 Till-like Soils 2.2.8 Bedrock 2.3 Geotechnical Design and Construction Issues HYDROTECHNICAL ENGINEERING 3.1 Design Flow 3.2 Labyrinth Spillway Design 3.3 Forebay 3.4 Downstream Channel

AUXILIARY SPILLWAY - PRELIMINARY DESIGN REPORT

 6

TABLES

Table 1: Water Level Monitoring at 2015 Boreholes	3
Table 2: Summary of Laboratory Testing on Samples from Gravel, some sand to gravelly Sand	4
Table 3: Summary of Laboratory Testing on Samples from Sand, trace gravel to gravelly	4
Table 4: Summary of Laboratory Testing on Samples from Clayey Silt to Silty Clay, trace sand to sandy	5
Table 5: Summary of Laboratory Testing on Samples from Silty Sand to Silt and Sand	5
Table 6: Summary of Laboratory Testing on Samples from Silty Sand to Silt and Sand	6
Table 7: Summary of Rock Core Laboratory Testing	6
Table 8: Summary of Spillway Discharges	8
Table 9: Summary of Design Flows	.11
Table 10: Class 10 kg Riprap Approximate Dimensions (mm). From BC MOTI (2008)	.11
Table 11: Class 250 kg Riprap Approximate Dimensions (mm). From BC MOTI (2008)	.12

FIGURES

Figure 1: Location Plan
Figure 2: Geotechnical Investigation Plan
Figure 3: Interpreted Stratigraphic Profile
Figure 4: Auxiliary Spillway - Plan
Figure 5: Auxiliary Spillway - Profile
Figure 6a: Excavation – Conceptual Plan
Figure 6b: Excavation – Conceptual Profile
Figure 7: Crest profile types for the auxiliary spillway
Figure 8: Visual results from FLOW-3D for the IDF
Figure 9: Standard Configuration of a circular cast iron sliding sluice gate

APPENDICES

APPENDIX A Geotechnical Investigation Data

Annex A Record of Testhole Sheets

Annex B Laboratory Test Results

Annex C

Rock Core Photograph

APPENDIX B

Geotechnical Design Recommendations Technical Memorandum

APPENDIX C

Structural Design Development Report

1.0 INTRODUCTION

This report summarizes the findings of recent work carried out by Golder Associates Ltd. (Golder) for the City of Nanaimo (City) on the Lower Colliery Dam in Nanaimo BC. These studies, carried out principally in August 2015, were primarily related to further design development of the auxiliary spillway for the Lower Dam. A conceptual design for the auxiliary spillway was presented in a previous report (Golder, 2015). Due to the limited time available to design and construct the spillway, design and construction are being carried out under a compressed time frame, and it is necessary to submit the design in a series of reports as the work is undertaken, rather than a single report following the completion of design. This report summarizes recent findings and design work related to the geotechnical investigations undertaken at the site, and further development of design concepts based on the improved geotechnical understanding.

The design presented in this report is of a preliminary nature (not detailed design); as such designs and layouts presented in this report are preliminary and subject to change as the design is developed. We understand that this report will be submitted to the Province of BC (Water Management Branch, Dam Safety Section) as part of the permitting process for the project.

2.0 GEOTECHNICAL ENGINEERING

2.1 Geotechnical Investigations

A subsurface geotechnical investigation at the proposed auxiliary spillway site, consisting of an initial test pitting phase and second drilled borehole phase, was conducted on August 6, 2015 and from August 17 to 21, 2015, respectively. The investigation program was carried out under the full-time supervision of Golder geotechnical staff who logged the subsurface conditions encountered and provided direction on sampling procedures, testing depths, and final depths of boreholes. Samples were carefully packed and stored prior to transport to the Golder laboratory in Burnaby.

2.1.1 Test Pit Investigation

A total of four testpits (TP15-01 to TP15-04) were putdown to depths between 2.7 m and 4.6 m using a Case 590 backhoe, supplied by City of Nanaimo. An additional two test pit locations (TP15-05 and TP15-06) were putdown further along the spillway alignment, using a hand shovel to depths of 0.5 m and 0.7 m. Grab samples were collected from select intervals as the test pits were excavated. The test pits were terminated at the maximum reach of the equipment, the maximum depth allowable to maintain hole stability, or practical excavation refusal. Test pits were backfilled upon completion and the disturbed ground surface covered with straw. A record of the soil and rock conditions encountered in the test pits can be found in the Record of Testholes, Appendix A, Annex A.

2.1.2 Borehole Investigation

A total of three boreholes (BH15-01 to BH15-03) were putdown to depths between 8.8 m to 17.4 m using a HT 750 Rubber Track Mounted Rotary Drill, supplied and operated by Foundex Explorations Ltd. of Surrey, BC. All boreholes were advanced using an HWT-sized (121 mm outside diameter) or PWT-sized (159 mm outside

diameter) mud-rotary tricone bit. Sampling of the soils was primarily carried out with Standard Penetration Tests (SPTs) driven at select intervals within the boreholes. After drilling to the desired sample depth, SPTs were carried out using a 50 mm diameter heavy wall split-spoon sampler, and driven using a 140 lb. (63.5 kg) automatic trip hammer with a 30 inch (760 mm) drop height. The number of blows required to advance the sampler 12 inches (300 mm) was recorded. Upon retrieval of the sampler, the SPT split tube was opened, and the recovered soil was classified, photographed and stored in labeled bags, and transported to the Golder Burnaby laboratory facility for testing of select samples.

Where bedrock was encountered, PWT casing was seated a nominal depth into rock and PQ-size coring equipment, fitted with a stepped diamond core bit, was used to advance the boreholes and obtain continuous rock core samples.

Each core run was advanced to a maximum length of 1.5 m, and the inner core barrel was retrieved by wire line, bringing the recovered core to the surface where it was placed in core boxes. Once the borehole coring was completed, the core was transported to Golder's Laboratory in Burnaby where samples were selected for further testing. Individual rock characteristics such as weathered state, structure, intact rock strength estimates and discontinuity conditions (type, shape, roughness and infill) were recorded in accordance with the ISRM Suggested Methods (1981).

Detailed descriptions of the soil and bedrock conditions encountered are presented in the Record of Testhole Sheets compiled in Appendix A, Annex A. Laboratory testing results are provided in Appendix A, Annex B. The rock core photograph is presented in Appendix A, Annex C.

2.1.3 Monitoring Well Installations

Monitoring wells were installed in boreholes BH15-01 and BH15-02 during the 2015 investigation. The monitoring wells were installed in sandy overburden soils, immediately above the very dense till-like soil contact and near the spillway invert elevation. Following installation, the piezometer screens were developed by removing approximately five well volumes of water from the piezometers. Following well development, field slug testing was performed on both piezometers to induce an instantaneous change in water level, for in situ assessment of hydraulic properties of the soils adjacent to the piezometer screen.

Both monitoring wells were completed with flush-mounted road boxes under the supervision and direction of Golder field staff. Monitoring well installations at BH15-01 and BH15-02, and backfilling at BH15-03 was completed in accordance with the BC Groundwater Protection Regulation. Installation and backfill details are summarized on Record of Borehole logs in Appendix A, Annex A.

2.1.4 Water Level Monitoring

Groundwater level measurements were taken following completion of drilling and well development. The measurements were collected using a water level meter. Groundwater monitoring results, for the piezometers, are presented in Table 1.

Borehole	Elevation at Ground Surface (m)	Elevation at Top of Pipe (m)	Top of Screen (m)	Bottom of Screen (m)	Water Elevation (m)
Reservoir Level	-	-	-	-	71.63
BH15-01	74.85	74.79	69.36	67.84	71.26
BH15-02	74.55	74.52	68.45	67.23	70.45

Table 1: Water Level Monitoring at 2015 Boreholes

During test pitting, groundwater seepage inflow was observed in test pits TP15-01, 02, and 03 at elevations of 71.1 m, 71.1 m, and 70.9 m, respectively. No groundwater seepage was observed at test pits TP15-04, 05, and 06.

2.1.5 Laboratory Testing

Upon completion of the field investigation work, Golder carried out laboratory testing on selected soil and rock samples obtained from the test pits and boreholes. The specific laboratory tests included the following:

- Water content determination tests (ASTM D2216);
- Grain size distribution analysis tests (ASTM C136, D422);
- Plasticity (Atterberg limit) determination tests (ASTM D4318); and,
- Uniaxial Compressive Strength (UCS) of rock core (ASTM D7012 Method C).

The results of the laboratory testing are presented in Appendix A, Annex B and summarized on the Record of testhole log sheets presented in Appendix A, Annex A.

2.2 Interpreted Geotechnical Conditions

The following sections describe the generalized subsurface conditions encountered during the investigation. Details of the subsurface conditions encountered in individual test pits and boreholes are reported in Appendix A, Annex A. Our interpretation of the generalized soil stratigraphy along the proposed alignment section is presented on Figure 3.

2.2.1 Topsoil

All test pits and boreholes, with the exception of TP15-05 and TP15-06, encountered topsoil at ground surface, extending to depths of between about 0.1 m and 0.2 m. The topsoil generally consisted of leafy, decomposed, organic matter.

2.2.2 Silt with varying sand and gravel

A deposit of fine-grained non-cohesive soil was encountered at test pits TP15-05 and 06. The unit was encountered at surface and terminated immediately above bedrock at depths of 0.4 m and 0.7 m. The unit was generally comprised of brown silt, with trace to some sand and gravel, and was observed to contain a boulder at TP15-06. No laboratory tests were performed on samples collected from this unit.

2.2.3 Gravel, some sand to gravelly Sand

A deposit of gravel and sand was encountered at all boreholes, and test pits TP15-01 to TP15-03. The unit contact was immediately below the topsoil, with a thickness between 1.1 m and 2.6 m. The unit was generally comprised of brown-grey, moist to dry, sand and gravel of varying percentages, with trace to some silt, and containing cobbles and boulders. Based on SPT blow counts during drilling, the relative density of the unit is generally compact.

Laboratory test results for this deposit are summarized below in Table 2.

Borehole	Sample Natural Moisture		Atterberg Limits (%)		Particle Size Distribution (%)		
	(Depth)	(%)	Plastic Limit	Liquid Limit	Gravel	Sand	Fines
TP15-01	Sa. 2 (1.22 – 1.46 m)	-	-	-	86	11	1
TP15-02	Sa. 1 (0.70 – 0.85 m)	-	-	-	75	23	2

 Table 2: Summary of Laboratory Testing on Samples from Gravel, some sand to gravelly Sand

2.2.4 Sand, trace gravel to gravelly

A deposit of sand was encountered at all boreholes and testpits TP15-01 to TP15-04. The unit was encountered at depths between 0.2 m and 2.7 m, with a thickness between 1.1 m and 2.9 m. The unit was generally comprised of grey, moist to wet, fine to coarse grained sand, with trace gravel to gravelly and trace silt. Groundwater seepage inflow near the base of this unit was typically observed into the open excavations during test pitting. Based on SPT blow counts during drilling, the relative density of the unit is generally compact to dense.

Laboratory test results for this deposit are summarized below in Table 3.

Table 3: Summary of Laboratory Testing on Samples from Sand, trace gravel to gravelly

Borehole	Sample			Atterberg Limits (%)		Particle Size Distribution (%)		
201011010	(Depth)	(%)	Plastic Limit	Liquid Limit	Gravel	Sand	Fines	
TP15-01	Sa. 8 (3.05 – 3.35 m)	-	-	-	0	90	10	
TP15-02	Sa. 4 (3.20 – 3.35 m)	-	-	-	26	73	1	
TP15-03	Sa. 3 (2.44 – 2.59 m)	-	-	-	7	84	9	

2.2.5 Clayey Silt to Silty Clay, trace sand to sandy

A deposit of fine-grained cohesive soils were encountered at all boreholes and testpits TP15-01, 03, and 04. The unit was encountered at depths between 1.1 m and 4.9 m, with a thickness between 0.4 m and 1.4 m. The unit was generally comprised of grey, clayey silt to silty clay, with varying percentages of fine to coarse sand. Based on SPT blow counts during drilling and observations during test pitting, the relative density of the unit varies from soft to very stiff.

Atterberg Limits Particle Size Distribution Natural (%) (%) Sample **Borehole** Moisture (Depth) Plastic Liquid (%) Gravel Sand Fines Limit Limit TP15-01 Sa. 10 (4.27 - 4.36 m) 23 17 25 1 25 74 TP15-01 --Sa. 11 (4.36 – 4.42 m) 18 ---TP15-02 Sa. 6 (3.96 – 4.11 m) 28 ----_ TP15-03 Sa. 4 (3.35 - 3.51 m) 23 -----**TP15-03** Sa. 5 (3.96 - 4.11 m) 21 13 22 0 11 89 TP15-03 Sa. 6 (4.36 - 4.42 m) 19 --_ -_ 21 TP15-04 Sa. 2 (1.16 - 1.22 m) -----TP15-04 Sa. 3 (1.83 - 1.98 m) 34 26 39 _ --BH15-02 Sa. 4 (5.18 – 5.79 m) 27 14 26 _ -_

Laboratory test results for this deposit are summarized below in Table 4.

Table 4: Summary of Laboratory Testing on Samples from Clayey Silt to Silty Clay, trace sand to sandy

2.2.6 Silty Sand to Silt and Sand

A deposit of silt and sand was encountered at all boreholes. The unit was encountered at depths between 5.3 m and 5.9 m, with a thickness between 0.4 m and 1.7 m, generally thinning towards the southeast, and inferred to pinch out at approximately chainage 0+055 (Figure 3). The unit was generally comprised of brown-grey, moist, fine to medium grained sand and silt, with varying percentages, and trace to some gravel. Based on SPT blow counts during drilling, the relative density of the unit is generally compact to very dense.

Laboratory test results for this deposit are summarized below in Table 5.

Borehole	Sample Natural Moisture		Atterberg Limits (%)		Particle Size Distribution (%)		
	(Depth)	(%)	Plastic Limit	Liquid Limit	Gravel	Sand	Fines
BH15-01	Sa. 4B (5.33 – 5.64 m)	-	-	-	1	75	41
BH15-02	Sa. 5 (6.71 – 7.24 m)	-	-	-	14	64	22
BH15-03	Sa. 4B (5.26 – 5.64 m)	-	-	-	1	35	64

2.2.7 Till-like Soils

Very dense, till-like soils very encountered at boreholes BH15-01 and 02. he unit was encountered at depths between 7.1 m and 7.2 m, and both boreholes were terminated within the unit. The unit was generally comprised of grey silt, fine to coarse grained sand, and fine to coarse grained gravel, of varying percentages. Fissured silty clay and laminations of fine silty sand were encountered within the unit, though were not observed in the upper 3 to 4 m. Based on SPT blow counts during drilling, the relative density of the unit is generally very dense.

The till-like soils unit is inferred to pinch out between approximate chainages 0+040 and 0+050 on Figure 3, and were not encountered in BH15-03.

Laboratory test results for this deposit are summarized below in Table 6.

Borehole	Sample	Natural Moisture	Atterberg Limits (%)		Particle Size Distribution (%)		
	(Depth)	(%)	Plastic Limit	Liquid Limit	Gravel	Sand	Fines
BH15-01	Sa. 5B (7.01 – 7.32 m)	-	-	-	10	49	41
BH15-02	Sa. 6 (8.23 – 8.46 m)	-	-	-	38	42	20
BH15-02	Sa. 8 (10.97 – 11.28 m)	15	33	21	2	45	53

Table 6: Summary of Laboratory Testing on Samples from Silty Sand to Silt and Sand

2.2.8 Bedrock

Bedrock was encountered at all boreholes and test pits located east of chainage 0+050 (BH15-03, TP15-03, -04, -05 and -06) between depths of 0.4 m and 5.6 m. Based on nearby bedrock outcrops, core recovered from BH15-03, and observations during test pitting, bedrock consists of unweathered, massive, grey conglomerate, with sub-rounded to sub-angular clasts up to approximately 40 mm diameter, cemented in a fine to coarse sandy matrix. Sub-horizontal breaks in core recovered at BH15-03 were generally fresh, and are inferred to be a result drilling induced breaks, resulting in a Rock Quality Designation (RQD) between 85% and 98%.

Based on drilling penetration rate at BH15-01 and observations in test pit TP15-04, the conglomerate bedrock may be overlain with a thin (less than 0.5 m thickness) layer of moderately to highly weathered sandstone. It should be noted that weak, friable sandstone may be present along the spillway channel.

Laboratory testing on PQ-size rock core recovered at BH15-03 is summarized below in Table 7.

	Sample Depth (m)		Uniaxial			
Borehole	From	То	Compression Strength (MPa)	Rock Strength	Rock Type	
BH15-03	6.86	7.04	60.7	R4 (Strong)	Conglomerate	
BH15-03	7.62	7.80	67.5	R4 (Strong)	Conglomerate	

Table 7: Summary of Rock Core Laboratory Testing

2.3 Geotechnical Design and Construction Issues

A preliminary assessment of the geotechnical design and construction issues has been developed based on the findings of the geotechnical investigation. Design recommendations related to the foundations for the permanent structures are presented in Appendix B. Additional recommendations related to the control of groundwater and seepage, both during the construction stage and during the permanent operation of the spillway are presented in this section.

As shown on the attached figures, excavation for the foundations of the weir and bridge structures will be in the range of four to five metres below the groundwater table and below reservoir level. The sandy soils which will be encountered in the excavation will be unstable when excavated at these depths below the groundwater table, and must be controlled by incorporation of measures to limit groundwater ingress into the excavation.

A number of options for controlling the groundwater have been considered as part of the project design. Although a decision has not yet been made in regards to a preferred option, one option which has been identified is presented on Figures 6A and 6B. This option included construction of a cut-off wall around the perimeter of the excavation. The cut-off wall would extend from the about 72 m elev (at or above the groundwater table) and would extend through the sandy soil layers into the lower permeability underlying glacial till. The cut-off would extend across the west, north and south sides of the excavation. The downstream extent of the walls is to be determined based on hydrogeological modelling which is currently underway. The cut-off shown in Figures 6A and 6B would also be used to provide excavation support in order to limit the width of the excavation and reduce the footprint of the excavation. The cut-off could be constructed using a number of different methods, including jet-grouted columns, secant piles, deep soil mixing, and other equivalent methods.

The cut-off, as shown on the figures, would also be incorporated into the permanent structure as a means to reduce uplift pressures on the foundations, and as a means to reduce groundwater seepage to the drainage system and the downstream spillway channel. As shown on the figures, the proposed cut-off and shoring system would require the excavation to be carried out in a staged manner,

- Stage 1 excavation excavate to a suitable elevation from which the cut-off wall would be constructed.
- Stage 2 excavation Excavate within the cut-off wall, with the installation of anchors (if required) with each excavation lift, to subgrade level.
- Stage 3 excavation - removal of the soil plug and cut-off wall in the forebay area following erection of the weir and bridge and related downstream structures.

The design of this construction and permanent cut-off and excavation support system will be further developed in the upcoming stages of the project.

3.0 HYDROTECHNICAL ENGINEERING

3.1 Design Flow

Spillway discharges have been developed (Golder, 2014: Appendix H) for a range of return periods up to and including the Inflow Design Flood (IDF) (Table 8). Based on CDA (2013) guidelines for a very-high consequence dam, the IDF is 2/3 of the way between the 1:1000-year and the Probable Maximum Flood (PMF). The peak outflow for the IDF after routing through the reservoir is 144 m³/s (Golder, 2014: Appendix H).

Return Period (y)	Peak Outflow (m ³ /s)
2	22.8
5	35.1
10	44.0
25	55.3
50	64.0
100	73.5
200	83.9
1000	107
IDF ^(a)	144

Table 8: Summary of Spillway Discharges

Note: ^(a) The IDF has no defined return period.

3.2 Labyrinth Spillway Design

The auxiliary spillway has been designed as a labyrinth structure (Figure 4, 5). The labyrinth design is based on the methodology of Tullis et al. (1995) and Crookston and Tullis (2013), which provide weir discharge coefficients that are a function of the upstream head, weir height, and weir apex angle. The coefficients are derived from scaled laboratory experiments for a quarter-round weir-crest profile (Figure 7).

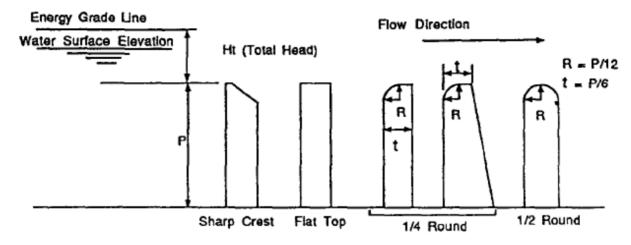


Figure 7: Crest profile types for the auxiliary spillway (from Tullis et al., 1995)

The initial design was assessed using the commercially available FLOW-3D software package, which is supported and created by Flow Science Inc¹. FLOW-3D is a three-dimensional computational fluid dynamics (CFD) software that utilizes the finite volume method to spatially discretize the Navier-Stokes equations throughout a given domain. The model computes water surface elevations, depth, 3 components of velocity, and non-hydrostatic pressure distribution. Examples of the results for the auxiliary spillway at the design flow are shown in Figure 8. The model includes the labyrinth weir and extends downstream of the two bridge piers.

In addition to confirming the feasibility of the labyrinth weir, the FLOW-3D model was used to refine the design. In the revised design a 1/2 round crest profile (Figure 7) has been used to increase the capacity of the auxiliary weir. This resulted in a gain of approximately 10% in the discharge capacity of the auxiliary spillway, which resulted in lower pond level and increased freeboard at the design flow.

¹ http://www.flow3d.com/

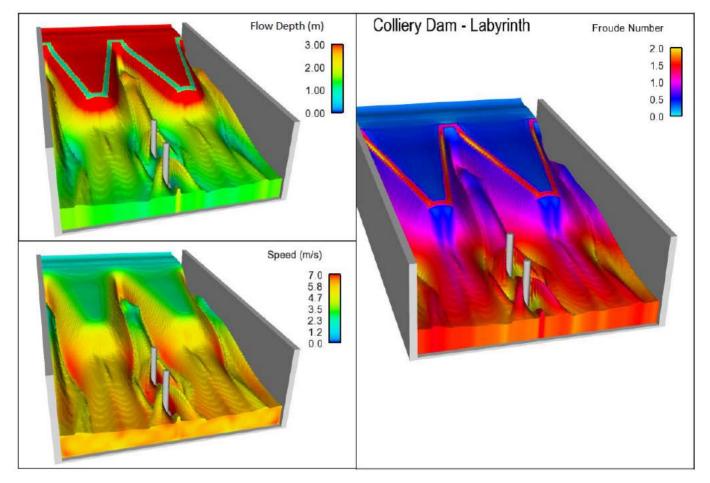


Figure 8: Visual results from FLOW-3D for the IDF.

The crest of the labyrinth spillway has been set at an elevation of 72.10 metres above sea level (masl), which is 0.5 m above the crest of the main spillway. The auxiliary spillway will pass flow when the discharge through the main spillway exceeds about 7 m^3 /s, which is expected to occur more than once annually during large rain storm events.

The combined capacity of the main and auxiliary spillways is sufficient to pass the IDF discharge of 144 m³/s, while providing approximately 0.18m of freeboard (Table 9).

Return Period	Pond Elevation		Freeboard			
(y)	(masl) ^(b)	Main Spillway Auxiliary Spillway		Total	(m) ^(c)	
2	72.32	12.7	10.1	22.8	1.11	
5	72.44	16.0	19.1	35.1	0.99	
10	72.51	18.3	25.7	44.0	0.92	
25	72.60	21.1	34.2	55.3	0.83	
50	72.66	23.3	40.7	64.0	0.77	
100	72.73	25.7	47.8	73.5	0.70	
200	72.81	28.4	55.5	83.9	0.62	
1000	72.97	34.7	72.3	107	0.46	
IDF ^(a)	73.43	46.3	97.7	144	0.18	

Table 9: Summary of Design Flows

Notes: (a) The IDF has no defined return period.

(b) Metres Above Sea Level.

(c) Relative to the main dam crest at 73.43 masl.

3.3 Forebay

The entrance velocity in the auxiliary spillway forebay is approximately 2 m/s for the IDF. Below the normal water level (71.6 masl) the forebay is a trapezoidal section with a base width of approximately 20 m and will be lined with Class 10kg riprap (Table 10).

Table 10: Class 10 kg Riprap Approximate Dimensions (mm). From BC MOTI (2008)

D ₁₅	D ₅₀	D ₈₅	Thickness
90	195	280	350

3.4 Downstream Channel

A channel will be constructed downstream of the spillway to convey the flow to Harewood Creek (Figures 4 and 5). The general dimensions of the trapezoidal channel are a base width of 6.0 m and longitudinal gradient of 3%. There is a steeper (5%) transitional section immediately downstream of the bridge that narrows from a base width of 13.8 m down to 6.0 m. The invert of the channel and much of the side slopes are generally expected to be excavated into bedrock (Figure 5). Non bedrock areas will be armoured with Class 250kg riprap (Table 11). The tail alignment of the downstream channel provides clearance to the root structures of several large diameter trees just to the north of the channel exit. The trees and root zones will be flagged on site as signal for tree protection to the contractor.

11

Golder

D ₁₅	D ₅₀	D ₈₅	Thickness
260	565	815	1000

Table 11: Class 250 kg Riprap Approximate Dimensions (mm). From BC MOTI (2008)

The downstream channel capacity is approximately 60 m³/s. Channel maintenance may be required on riprap lined sections of the channel when flows exceed this value.

3.5 Low Level Outlets

Two low-level round sluice gate outlets are to be included to allow drawdown of the reservoir level for emergency repairs and scheduled maintenance, and to provide opportunity for augmentation of low flows in the Chase River during prolonged dry periods. As indicated in previous project reports, it is advantageous to be able to draw down the reservoir in the event of damage occurring to the Lower Dam, in particular following a severe earthquake. The larger of the two gates (supplemented with flow from the smaller gate) will be used for such emergency drawdown purposes. It is anticipated that the smaller of the two gates will be used for other purposes, such as flow augmentation. Standard circular "off the shelf" Armtec² sliding sluice gates are proposed (Figure 9).

² www.armtec.com

AUXILIARY SPILLWAY - PRELIMINARY DESIGN REPORT

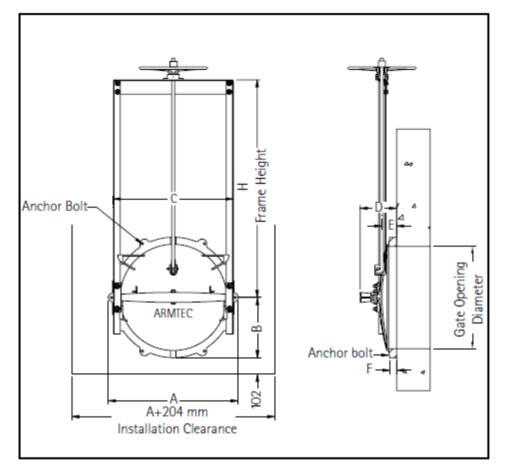


Figure 9: Standard Configuration of a circular cast iron sliding sluice gate (www.armtec.com).

The sluice gates are to be located at the midpoint along the outer labyrinth walls (Figure 4), with the inverts positioned 69.3 masl (200mm above the labyrinth floor). The larger gate will have a nominal diameter of 1067 mm (42"), and a smaller gate with a nominal diameter of 610 mm (24"). The combined capacity of the two sluice gates at the normal operation level (71.6 masl) is 6.3 m³/s. With no inflows to the reservoir (i.e. during dry summer months), the two gates have capacity to draw the reservoir level down 2 m to 69.6 masl within 6 hours. The rate of reservoir drawdown is reduced depending upon inflows to the reservoir. For a typical winter baseflow into the reservoir of 1.6 m³/s (Golder 2014: Appendix E), the two gates have capacity to draw the reservoir draw the reservoir level down 0.53 m to 70.07 masl within 6 hours.

4.0 STRUCTURAL ENGINEERING

Structural engineering is being undertaken by Herold Engineering Limited. An over view of the current structural concept is presented in Appendix C.

5.0 AESTHETICS AND LANDSCAPE DESIGN

Colliery Dam Park is an important public amenity requiring special considerations for park users, maintaining habitat and ecological values, and aesthetics. The installation of the auxiliary spillway infrastructure will cause disturbance to the park that requires care and attention to minimize short and long term impacts.

The approach to landscape design and site restoration is to carefully construct the facility in ways that will result in the spillway providing the intended engineering and public safety benefits, but also accommodate park functions such as user circulation, park views, and forest character so that in time the spillway blends into the park similar to other dam components.

The labyrinth, forebay and downstream channel is sited to best advantage using a multiple accounts criteria that includes risk management, costs, minimizing site disturbance and tree loss, and minimizing inconvenience to the park user. Tree retention, including minimizing construction related impacts to root zones and soil structures are important factors in the design and construction of the spillway.

There will be a number of trees and vegetation requiring removal due to spillway construction and related activities such as truck and machine access, materials handling and storage, ground water management, sediment controls, etc. Golder will establish the limits of excavation required for construction, and communicate with the general contractor areas that are acceptable for construction staging and other activities. Protected areas will be marked and fenced on site with the understanding that no incursions into the protected zones will be allowed.

A set of landscape drawings and specifications will be included in the construction contract documents. The landscape documents will outline:

- a general layout and grading of finished park restoration, including limit of work zone and make good line
- tree removals and protection zones,
- clearing and grubbing specifications,
- organic soils stripping, storage, conservation, and amendments (if required) specifications, and
- develop a re-vegetation strategy including tree replacement ratio, a planting plan that illustrates tree, shrub and groundcover species and sizes

6.0 FURTHER WORK

As indicated in previous correspondence, design development will be undertaken in parallel with construction planning and execution. A civil work contractor has now been procured. This contractor was selected via a qualification process - ability to mobilize to site quickly was a key criteria. Once the contract is executed, it is anticipated the contractor will begin mobilizing to site. This will require close coordination with a separate cutoff wall contractor, as certain site preparation activities must occur in advance of the cutoff wall, and mass earthworks cannot begin until after the cut-off wall is completed.

Design development activities are ongoing to accommodate a cutoff wall as well as geotechnical, structural and aesthetic details. Final design will impact the excavation depth and thus the excavation limits. Tree clearing cannot begin until the excavation limits have been fixed. As previously indicated, detailed engineering and designs will be developed and presented in a separate upcoming design document.

7.0 CLOSURE

We trust that the information provided herein meets your present requirements. Should you have any questions regarding the above, please do not hesitate to contact us.

GOLDER ASSOCIATES LTD.

Bruce Downing, P. Eng. Principal, Senior Geotechnical Engineer

Robert Millar, Ph.D., P. Eng./P. Geo. Associate, Senior Hydrotechnical/Water Resources Engineer

nonas Madder

for Chase Reid, E.I.T. Geological Engineer

Don Crockett, B.E.S.,M. Land. Arch.,BCSLA,CSLA Principal, Senior Landscape Architect

BRD/TM/nnv

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

o:\final\2013\1447\13-1447-0516\1314470516-032-r-rev0\1314470516-032-r-rev0 aux spillway prelim design 04sep_15.docx

8.0 **REFERENCES**

- ASTM C136/C136M-14 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, American Society for Testing and Materials.
- ASTM D2216-10 Standard Test Methods for Laboratory Determination of Water (Moisture) Content in Soil and Rock by Mass, American Society for Testing and Materials.
- ASTM D422-63(2007)e2 Standard Test Method for Particle-Size Analysis of Soils, American Society for Testing and Materials.
- ASTM D4318-10e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, American Society for Testing and Materials.
- ASTM D7012-14 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, American Society for Testing and Materials.
- BC MOTI (British Columbia Ministry of Transportation and Infrastructure). 2008. 2009 Standard Specifications for Highway Construction. Volume 1 of 2.
- British Columbia Groundwater Protection Regulation, 2004.
- Brown, 1981, "Rock Characterization Testing and Monitoring: ISRM Suggested Methods", International Society for Rock Mechanics.
- Crookston, B.M., and Tullis, B.P. 2013. Hydraulic Design and Analysis of Labyrinth Weirs. 1. Discharge Relationships. Journal of Irrigation and Drainage Engineering. 139 (5). 363-370.
- Golder . 2014. Colliery Dams, Nanaimo, BC. Hydrology, Hydraulics, and Middle Dam Breach Analysis. Submitted to City of Nanaimo, July 25, 2014.
- Golder Associates Ltd. 2015. Letter report on "Colliery Dams, Lower Dam Development of Design Alternatives", dated July 8, 2015.
- Tullis, J.P., Amanian, N., and Waldron, D. 1995. Design of Labyrinth Spillways. Journal of Hydraulic Engineering. 121 (3). 247-255.

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder can not be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

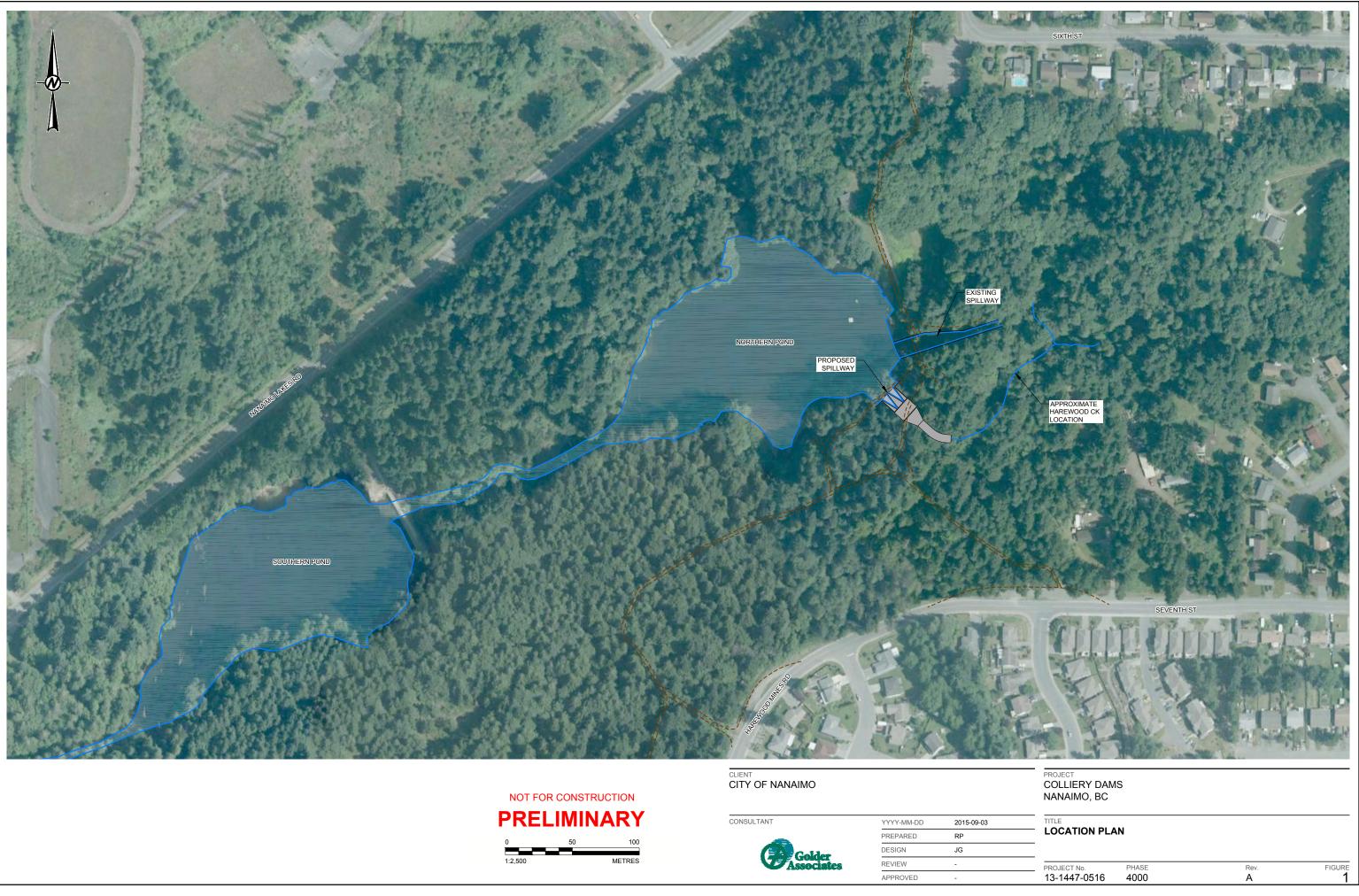
The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

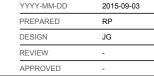
Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

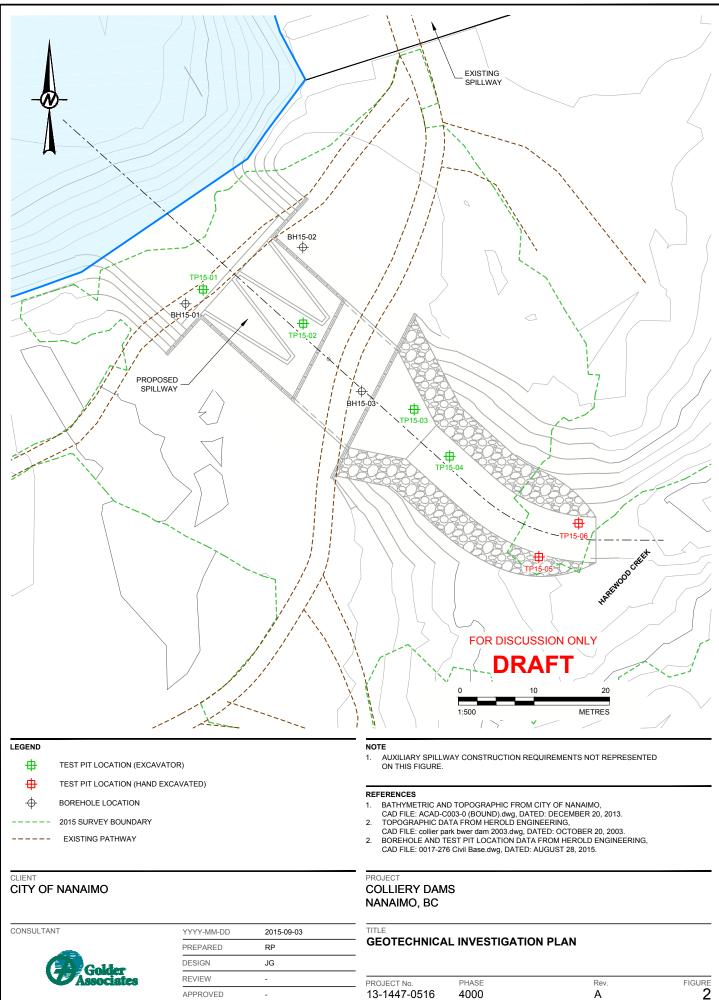
Soil, Rock and Groundwater Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

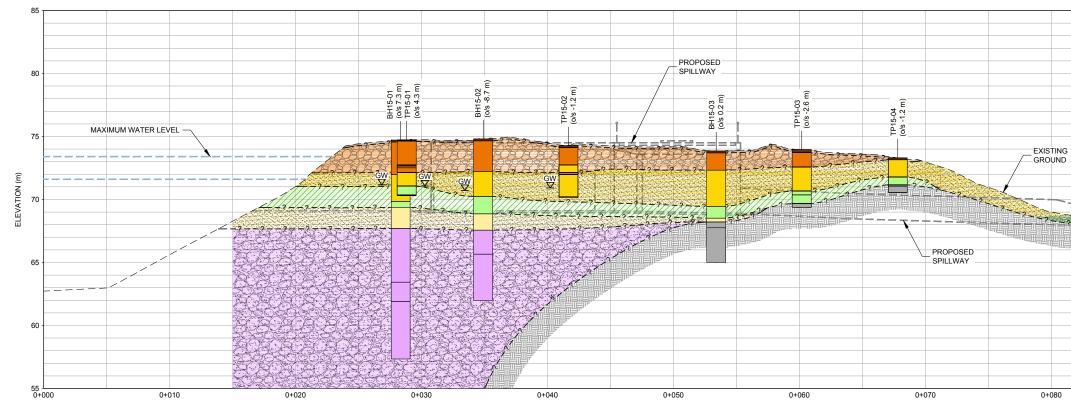

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.


Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.


During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

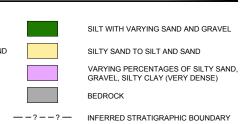
Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.



-

2


А

SCALE 1:300

GROUNDWATER LEVEL

NOTE

- AUXILIARY SPILLWAY CONSTRUCTION REQUIREMENTS NOT REPRESENTED ON THIS FIGURE.
 ALL ELEVATIONS ARE IN METRES AND REFER TO GEODETIC DATUM.

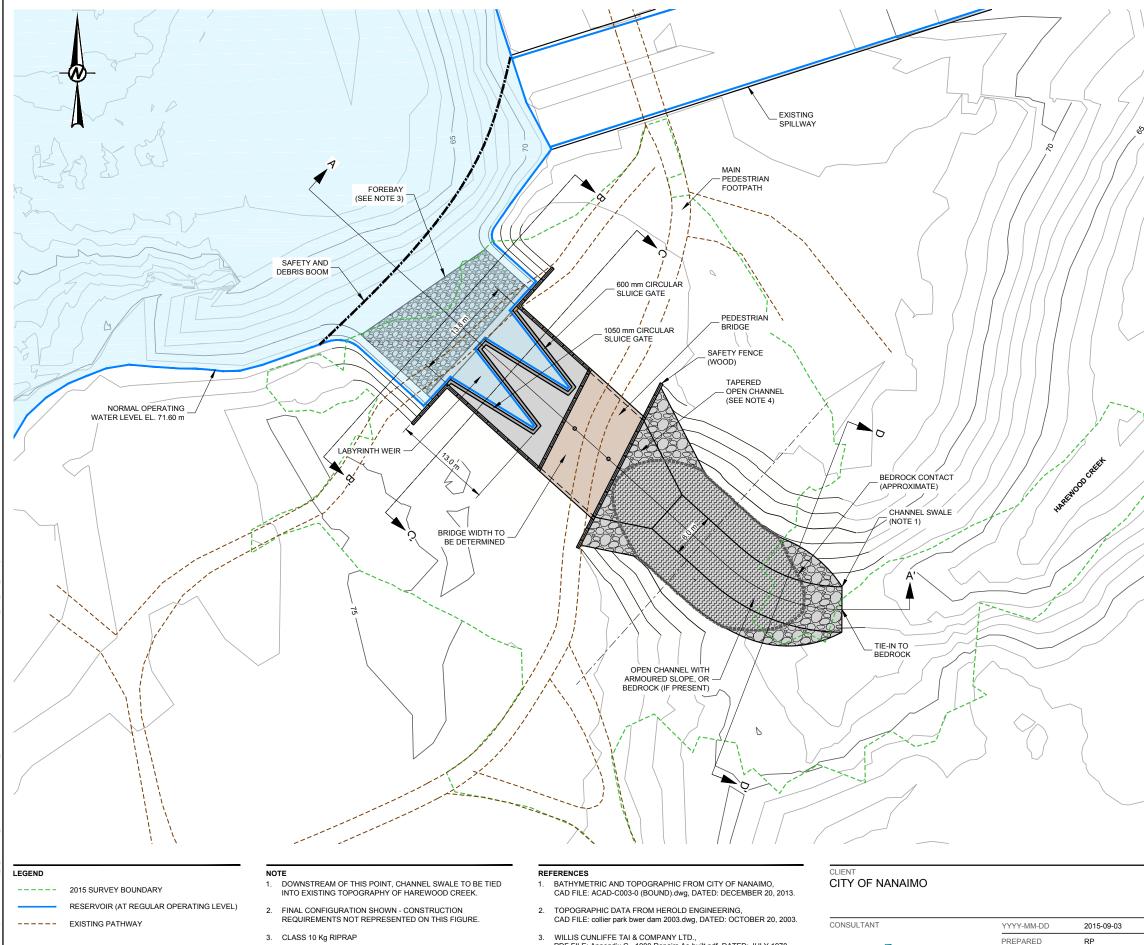
REFERENCES

- BATHYMETRIC AND TOPOGRAPHIC FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, DATED: DECEMBER 20, 2013.
 TOPOGRAPHIC DATA FROM HEROLD ENGINEERING, DATED: DATED: DATABASE 20, 2002.

- CAD FILE: collier park bwer dam 2003.dwg, DATED: OCTOBER 20, 2003.
 BOREHOLE AND TEST PIT LOCATION DATA FROM HEROLD ENGINEERING, CAD FILE: 0017-276 Civil Base.dwg, DATED: AUGUST 28, 2015.

CLIENT CITY OF NANAIMO

CONSULTANT



YYYY-MM-DD	2015-09-03
PREPARED	RP
DESIGN	JG
REVIEW	-
APPROVED	-

TP15-05	(12) (12) (12) (12) (12) (12) (12) (12)		ELEVATION (m)	
			ш 65	
			60	
)	0+090	0+1	- 55 00	
	FOR DISC	USSION ONLY	,	
		USSION ONLY	,	
	DF	5 10		
	DF	RAFT		
PROJECT COLLIERY D NANAIMO, B	0 1:300	5 10		
COLLIERY D NANAIMO, B	0 1:300	5 10 METRES		

RO

75

4. CLASS 250 Kg RIPRAP

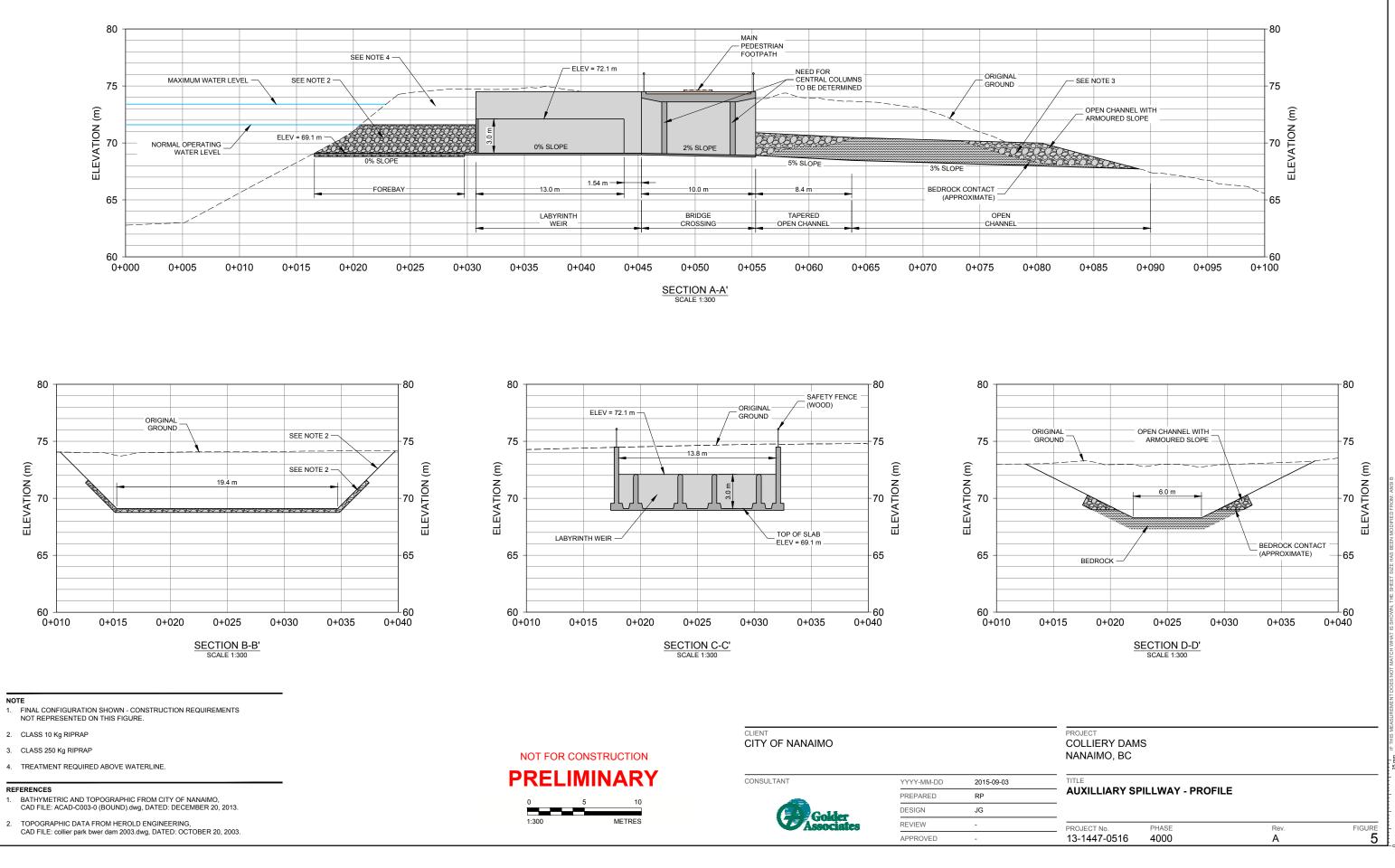
- WILLIS CUNLIFFE TAI & COMPANY LTD., PDF FILE: Appendix C 1980 Repairs As-built.pdf, DATED: JULY 1978.
- 4. SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS, (EBA 2010).

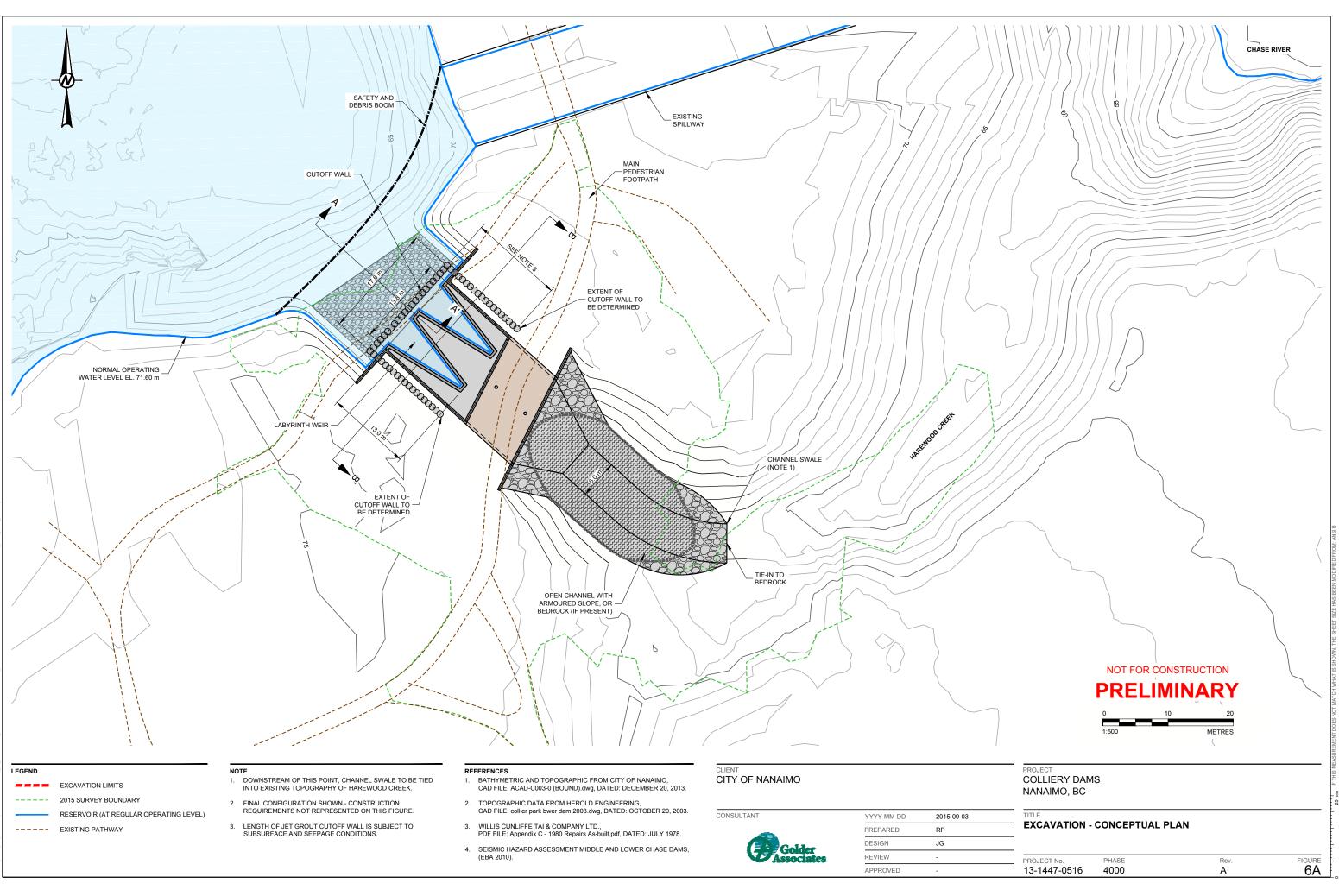
DESIGN

REVIEW

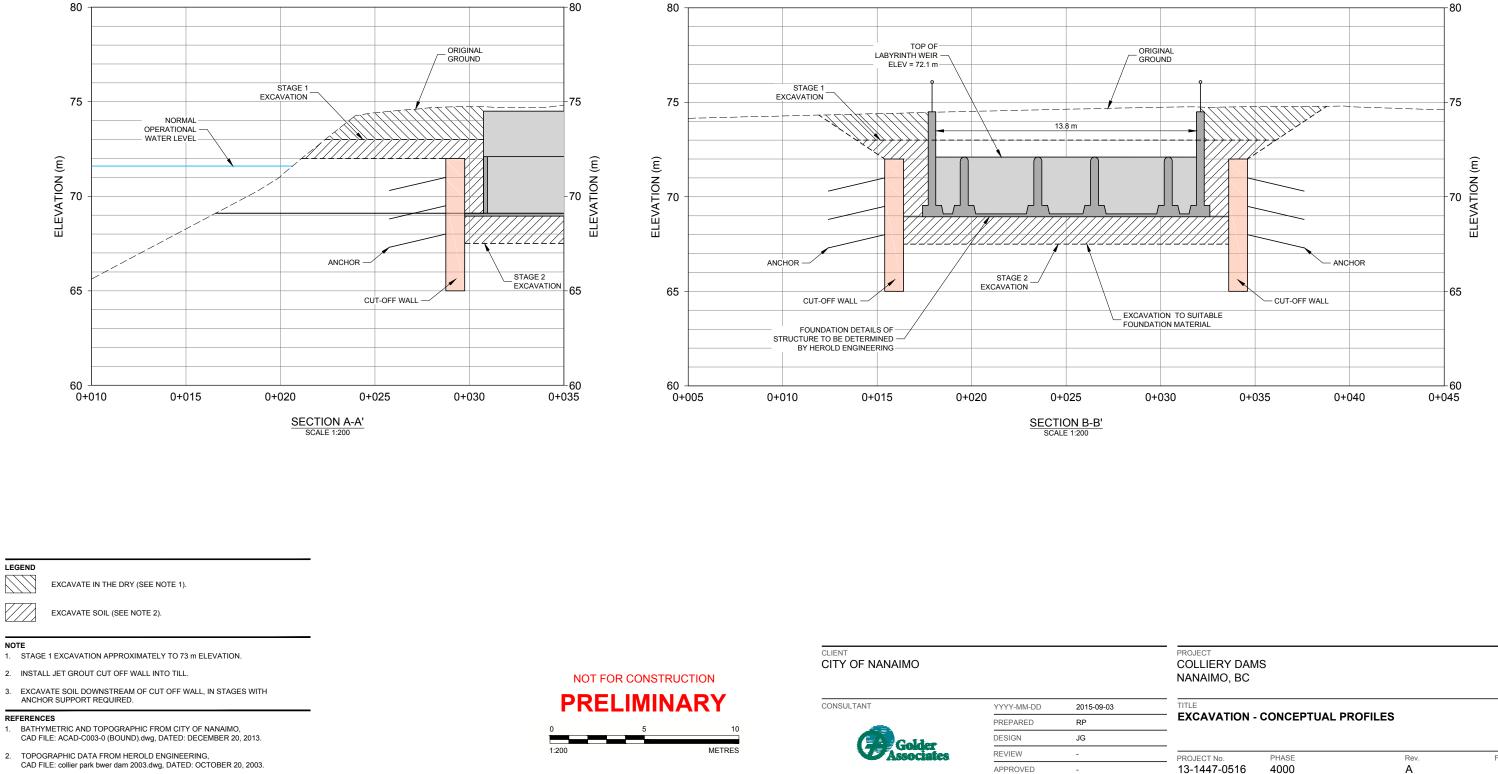
APPROVED

Golder


₹₩

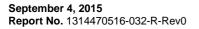

JG

-


-

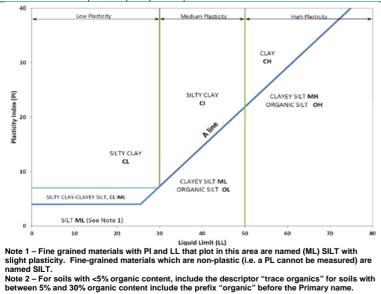
			HASE RIVER
	Line Line Line Line Line Line Line Line		
8			
	/		
		\sum	
		TRUCTION	
	PRELIM	NARY	
	0 10 1:500	20 METRES	
PROJECT COLLIERY DAM NANAIMO, BC	S		
TITLE AUXILLIARY SF	PILLWAY - PLAN		

	YYYY-MM-DD	2015
	PREPARED	RP
Golder	DESIGN	JG
	REVIEW	-
	APPROVED	



PROJECT			
COLLIERY DAM	/IS		
NANAIMO, BC			
TITLE		ROFILES	
EXCAVATION -			
EXCAVATION -	CONCEPTORE		
PROJECT No.	PHASE	Rev.	FIGURE

Geotechnical Investigation Data


Annex A Record of Testhole Sheets

METHOD OF SOIL CLASSIFICATION

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name			
		of s m)	Gravels with	Poorly Graded		<4		≤1 or ≩	≥3		GP	GRAVEL			
(ss	(mm ē	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	/ELS mass action i	/ELS mass action i 4.75 m	≤12% fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL	
by mas	SOILS		GRAV GRAV Gravels with with	Below A Line			n/a				GM	SILTY GRAVEL			
ANIC ≤30%	vinit and (N N N N N N N N N N N N N N N N N N N	>12% fines (by mass)	Above A Line		n/a					GC	CLAYEY GRAVEL				
NORG	E-GRA s is lar	م س	Sands with	Poorly Graded		<6		≤1 or :	≥3	≤30%	SP	SAND			
Janic C	(Organic COAR (>50% by mass coarse fractor smaller than 4.75 mil	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND				
(Org		Sands with	Below A Line			n/a				SM	SILTY SAN				
		(≥5(coa smalle	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND			
Organic					Field Indicators										
or norganic	Soil Group	Туре	of Soil	Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name			
		5 mm) and LL plot	- plot	plot	, plot	- plot		Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT
s)	5 mm)		SILTS (Non-Plastic or PI and LL plot below A-Line on Plasticity Chart below)	Liquid Limit <50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SI			
INORGANIC (Organic Content ≤30% by mass)	olLS an 0.07	SILTS	ow A-L Plastic art belo		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT			
ANIC ≤30% I	FINE-GRAINED SOILS	- Plasti	Dig O	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SIL			
INORGANIC content ≤30%	GRAIN	(Non		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT			
l Janic C	FINE- y mass	(250% by mass is smaller than 0.075 mm) CLAYS CLAYS SILTS SILTS SILTS SILTS SILTS SILTS Above A-Line on Plasticity Chart Chart on Plasticity		Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLA			
(Org	50% b		A-Line city Ch elow)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLA			
	₹)		CI (PI an above Plastic	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY			
IL≺ NIC	>30% >30% \$\$\$)	Peat and r	mineral soil tures		<u> </u>	1	<u> </u>	<u> </u>	1	30% to 75%		SILTY PEA SANDY PEA			
Solution of the set of								75% to 100%	PT	PEAT					

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to er indicates a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL, SAND and CLAY)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_t), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

NON-COHESIVE (COHESIONLESS) SOILS

Compactness ²					
Term	SPT 'N' (blows/0.3m) ¹				
Very Loose	0 - 4				
Loose	4 to 10				
Compact	10 to 30				
Dense	30 to 50				
Very Dense	>50				
1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects.					
2. Definition of compactness des	scriptions based on SPT 'N' rang	es from			
Terzaghi and Peck (1967) and c	orrespond to typical average N60 valu	es.			

Field Moisture Condition											
Term	Description										
Dry	Soil flows freely through fingers.										
Moist	Soils are darker than in the dry condition and may feel cool.										
Wet	As moist, but with free water forming on hands when handled.										

SAMPLES								
AS	Auger sample							
BS	Block sample							
CS	Chunk sample							
DO or DP	Seamless open ended, driven or pushed tube sampler – note size							
DS	Denison type sample							
FS	Foil sample							
RC	Rock core							
SC	Soil core							
SS	Split spoon sampler – note size							
ST	Slotted tube							
то	Thin-walled, open – note size							
ТР	Thin-walled, piston – note size							
WS	Wash sample							
SOIL TESTS								
w	water content							
PL, w _p	plastic limit							
LL , w_L	liquid limit							
С	consolidation (oedometer) test							
CHEM	chemical analysis (refer to text)							
CID	consolidated isotropically drained triaxial test ¹							
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹							
D _R	relative density (specific gravity, Gs)							
DS	direct shear test							
GS	specific gravity							
М	sieve analysis for particle size							
MH	combined sieve and hydrometer (H) analysis							
MPC	Modified Proctor compaction test							
SPC	Standard Proctor compaction test							

MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
	source is source include

unit weight

1. Tests which are anisotropically consolidated prior to shear are shown as CAD, CAU.

COHESIVE SOILS

Consistency											
Term	Undrained Shear Strength (kPa)	SPT 'N' ¹ (blows/0.3m)									
Very Soft	<12	0 to 2									
Soft	12 to 25	2 to 4									
Firm	25 to 50	4 to 8									
Stiff	50 to 100	8 to 15									
Very Stiff	100 to 200	15 to 30									
Hard	>200	>30									

 SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

	Water Content
Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
1.	GENERAL	(a) W	water content
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	Ip or PI	plasticity index = $(w_l - w_p)$
g	acceleration due to gravity	Ws	shrinkage limit
t	time	IL	liquidity index = $(w - w_p) / I_p$
•		I _C	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
		ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$
н.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
2 8	linear strain	q	rate of flow
	volumetric strain	ч v	velocity of flow
εν	coefficient of viscosity	i	hydraulic gradient
η	Poisson's ratio	k	hydraulic conductivity
υ		ĸ	(coefficient of permeability)
σ	total stress	;	· · · · · · · · · · · · · · · · · · ·
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ ₁ , σ ₂ ,	principal stress (major, intermediate,		
σ_3	minor)	(c)	Consolidation (one-dimensional)
		Cc	compression index
σ_{oct}	mean stress or octahedral stress	•	(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress	_	(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ'_{P}	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_{p} / σ'_{vo}
	dry density (dry unit weight)	(d)	Shear Strength
$\rho_{d}(\gamma_{d})$	density (unit weight) of water		peak and residual shear strength
$\rho_w(\gamma_w)$	density (unit weight) of solid particles	τ _p , τ _r	effective angle of internal friction
ρs(γs)	unit weight of submerged soil	φ' δ	angle of interface friction
γ'	a		coefficient of friction = tan δ
D	$(\gamma' = \gamma - \gamma_w)$	μ	
D _R	relative density (specific gravity) of solid	C'	effective cohesion
	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
е	void ratio	P,	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	(σ ₁ - σ ₃)/2 or (σ' ₁ - σ' ₃)/2
		qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	$\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)		
	C <i>y</i> ,		

	Sur	54463 vey Pro	373.37 E: 429999.66 UTM NAD83 Zone: 1 ovided by: Herold Engineering Limited	0			INC	LINATION: -90	0								
O Ground Surface 74.76 C V0 20 50 10 Cound Surface 74.76 C V0 20 V0 V0 20 V0 20 V0 V0 20 V0 V0 <t< th=""><th> </th><th>z</th><th>SOIL PROFILE</th><th></th><th></th><th>SAM</th><th></th><th></th><th>NGTH</th><th>rem V. 🕀 U -</th><th></th><th>RADATIC</th><th>DN %</th><th>→ →</th><th>DND NNC</th><th>μĢ</th><th>STANDPIPE, THERMISTO</th></t<>		z	SOIL PROFILE			SAM			NGTH	rem V. 🕀 U -		RADATIC	DN %	→ →	DND NNC	μĢ	STANDPIPE, THERMISTO
0 Ground Surface 74.78 <th>METRES</th> <th>METHOD METHOD</th> <th>DESCRIPTION</th> <th>STRATA PLOT</th> <th>DEPTH</th> <th>NUMBER</th> <th>RECOVERY %</th> <th>WATER (</th> <th>ONTEN</th> <th>60 80 PERCENT</th> <th>AVEL</th> <th>SAND</th> <th>FINES</th> <th>PLASTICIT</th> <th>FROZEN GRO DESCRIPTIO</th> <th>ADDITIONA LAB. TESTIN</th> <th></th>	METRES	METHOD METHOD	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	RECOVERY %	WATER (ONTEN	60 80 PERCENT	AVEL	SAND	FINES	PLASTICIT	FROZEN GRO DESCRIPTIO	ADDITIONA LAB. TESTIN	
2 GWICKW, SAND and GRAVEL to course, sub-rounded to sub-angular gravel, tace to some sit, coulder encountered at approx. 0.9m depth. 0.08 0 1 -0.3m diameter boulder encountered at approx. 0.9m depth. 0.10 2 GG GS GRAVEL, free countered at approx. 0.9m depth. 0.10 3 (GP) SAND, medium to coarse, some gravel, brown-grey, moist. 0.10 1 (GP) SAND, medium to coarse, some gravel, brown-grey, moist. 0.10 1 (GP) SAND, medium to coarse, some gravel, brown-grey, moist. 0.10 1 (GP) SAND, medium to coarse, some gravel, brown-grey, moist. 0.10 1 (GP) SAND, and GRAVEL, fine to coarse, sub-rounded to sub-angular, contains roots; brown to brown-grey, moist. 0.10 2 (GP) SAND, fine to medium, trace gravel, some stil; grey, moist to wet. 0.10 3 (CL) sandy SILTY CLAY, fine to coarse sand; gravel, some stil; grey, moist to wet. 0.00 4 (CL) sandy SILTY CLAY, fine; grey; weth. 4.42 5 End of Test Pit. (Practical Refusa) Environmental jar samples approx, depth: E1 - 0.2m to 5m 4.42	0				74.76												
	1 2 3	Case 590 Backhoe Exception Bucket	 (SW/GW) SAND and GRAVEL to sandy GRAVEL, fine to course, sub-rounded to sub-angular gravel, trace to some silt, contains roots; brown; with cobbles; dry to moist. 0.3m diameter boulder encountered at approx. 0.9m depth. (SP) SAND, medium to coarse, some gravel; brown-grey; moist. (GP) GRAVEL, some sand; dark grey; moist. (SPAVEL, some sand; dark grey; moist. (SWGW) SAND and GRAVEL, fine to coarse, sub-rounded to sub-angular, contains roots; brown to brown-grey; moist. (SP-SM) SAND, fine to medium, trace gravel, some silt; grey; moist to wet. (CL) sandy SILTY CLAY, fine to coarse sand; grey mottled brown; w>PL, very stiff. (CL) sandy SILTY CLAY, fine; grey; w>PL, soft to firm. End of Test Pit. (Practical Refusal) Environmental jar samples approx. depth: E1 - 0.2m to 0.5m 		72.78 72.55 2.21 72.17 2.59 71.10 3.66	G1 C G2 C G3 C G3 C G4 C G5 C G6 C G6 C G6 C G7 C G8 C G9 C	<u> 0 0 0 0 0 0 0 0 0 </u>		, 0 1		0	90	10				Observed T during

CLIE	ENT:	T No.: 13-1447-0516 / 4000 / 4300 City of Nanaimo			RE		RD OF									ſ		ET 1 OF 1 I: Geodetic
LOC	ATIC	T: Colliery Dam Auxilliary Spillway NI: Nanaimo, B.C. 58.87 E: 430012.91 UTM NAD83 Zone: ided by: Herold Engineering Limited	10							FE: Aug	just 6, 2	015						
Surve	ey Prov		-							at V. +	Q - ●	GR	ADATIO	N %		0		PIEZOMETER,
MEIKES	EXCAVATION	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	1BER	RECOVERY % ST) 4 ATER CO	0 6 ONTENT	at V. + em V. ⊕ Pocket F 0 8 PERCEN NP - Nor 0 4	Pen - 🔳 0 NT	SAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	STANDPIPE, THERMISTO INSTALLATION OR SEEPAGE OBSERVATIO
0 -		Ground Surface TOPSOIL (GW-GM) sandy GRAVEL, fine to coarse, trace to some silt, contains roots; brown; with cobbles, dry to moist. - 0.28m diameter cobble encountered at approx. 0.8m depth.		74.43 74.28 0.15								75	23	2				
	Case 590 Backhoe Excavator Bucket	 (SP) SAND, fine to medium, trace to some gravel; grey to grey-brown; moist. - 0.33m diameter boulder encountered at approximately 1.6m depth. (SP) gravelly SAND, fine to coarse, sub-rounded to sub-angular gravel, trace silt, contains roots; brown-grey; moist. - possible cinder piece found at 		72.91 1.52 72.30 72.15 2.29	G3 G													
3		Approx. 2.2m depth. (SP) SAND, fine to coarse, trace gravel to gravelly, trace silt; brown-grey to grey; moist to wet. (SM) SILTY SAND, fine, trace plastic fines; brown; wet.		70.39	G4 G G5 G G6 G	iS			C			26	73	1				Seepage Observed during Excavation
5		End of Test Pit. (Practical Refusal) Environmental jar samples approx. depth: E1 - 0.7m to 0.8m E2 - 1.4m to 1.5m E3 - 2.1m to 2.3m																
6					1.5.00000.00													
						A CARDINAL STREET, SAN AND AND AND AND AND AND AND AND AND A	A A A				A NAME AND A							
DEF	PTH S	CALE					Â	e c	ماطه	P	S	OIL CL	ASSIFI	CATION		EM: GAC GGED: T		REV:

Golder

		CT No.: 13-1447-0516 / 4000 / 4300			RE	CC	ORE	OF	TES	ST PI	T: TP	15-03	3						ET 1 OF 1
PR LC	CAT	:City of Nanaimo CT:Colliery Dam Auxilliary Spillway ON:Nanaimo, B.C.						EXCA	AVATI	ION DA	TE: Aug	gust 6, 20	015				L	JATUM	: Geodetic
N: Sur	5446 vey Pi	357.52 E: 430027.59 UTM NAD83 Zone: 10 ovided by: Herold Engineering Limited	0			IN		IATION:											
Ш Л	NO.	SOIL PROFILE	1		SAI	MPLE	<u> </u>	SHEAR S Cu, kPa	TREN	GTH r r	at V. + em V. ⊕ Pocket I	Q - ● U - ●	GR		N %	Ł	NND	NG NG	PIEZOMETER, STANDPIPE, THERMISTOR
DEPTH SCALE METRES	EXCAVATION	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	20 WATI Wp H 10	41 ER CC 20		PERCE	NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
— o		Ground Surface	222	74.17		_	_												
	Case 590 Backhoe	TOPSOIL (SW/GW) sandy GRAVEL to SAND and GRAVEL, fine to coarse, sub-rounded to sub-angular gravel, trace silt, contains roots and cobbles; brown to light brown; dry to moist. - 0.23m diameter cobble encountered at approx. 1.1m depth. (SP-SM) SAND, fine to coarse, trace to some gravel, some silt; brown-grey; moist. - 0.36m diameter boulder and 0.25m		0.00 73.94 0.23	G1 G2 G3 G4 G5				c	0			7	84	9				Seepage Observed during Excavation
		Environmental jar sampies approx. depth: E1 - 0.9m to 1.1m										s	OIL CL	ASSIFI	CATION		EM: GAC		REV:
	PTH 50	SCALE					(P	G	olde ocia	r	5	UIL CL	499ILI	CATION	LOO	=M: GAC GGED: T KED: RC	M	REV:

lation

(CLIE	NT:	T No.: 13-1447-0516 / 4000 / 4300 City of Nanaimo			RE	co			ST PI							[ET 1 OF 1 : Geodetic
L	.00	ATIO	T: Colliery Dam Auxilliary Spillway N: Nanaimo, B.C. 51.32 E: 430032.28 UTM NAD83 Zone: 10 ded by: Herold Engineering Limited)			INI		:XCAVA ON: -90	NON DA	.TE: Auç	just 6, 2	015						
			SOIL PROFILE			SAM			AR STRE		nat V. + rem V.⊕	Q - ●	GR	ADATIO	N %		Q _z	. ()	PIEZOMETER, STANDPIPE, THERMISTO
DEPTH SCALE		EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	RECOVERV %		20 VATER (40 0 CONTENT	Pocket I 50 8 PERCEI	Pen - 🔳 :0 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATIO
_	0		Ground Surface TOPSOIL	===	73.51														
-	1		(SP) SAND, fine, some silt, some gravel, contains roots; light brown; with cobbles, dry to moist.		73.35 0.15		ŝS												
	2	Excavator Bucket	(ML) CLAYEY SILT, some sand, trace to some gravel, contains roots; brown-grey to grey motted brown - sub-angular to rounded cobbles up to 0.28m dia.		72.36 1.14	G2 (SS SS			0 	-0-1								
			Inferred SANDSTONE.		71.22 2.29 70.92 70.76 2.74	G5 (S S												
-	3		End of Test Pit. (Practical Refusal)		2.74														
-	4																		
	5																		
	6																		
-							R 11												
National IM Server GNT_GAL_WATIONALIM Unique Project ID: Output Form:BC_TESTIPIT WITH PHOTO _AV/oung_ 94/15																			
National IN verver.	DEP		CALE					Ć	As	olde socia	er ates	S	OIL CL	ASSIFI	CATIO	LOO	EM: GAC GGED: T KED: RC	M	REV:

	CLIE	ENT: DJEC	T No.: 13-1447-0516 / 4000 / 4300 City of Nanaimo T: Colliery Dam Auxilliary Spillway Ns: Nanaimo, B.C.			RE	EC	OR	EXCAVAT								[ET 1 OF 1 : Geodetic
			37.99 E: 430044.08 UTM NAD83 Zone: 10 ided by: Herold Engineering Limited				I	INCL	INATION: -90°	,									
щ		z	SOIL PROFILE			SA	MPL	.ES	SHEAR STREM Cu, kPa	NGTH I	nat V. + rem V.⊕	Q - ● U - ●	GR	ADATIO	N %		Q N Z	ں _ا	PIEZOMETER, STANDPIPE, THERMISTOR
DEPTH SCALE		EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY %	20 4 WATER C Wp I	40 (ONTENT	Pocket I 50 8 PERCEI	Pen - 🔳 :0 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
-	0		Ground Surface (ML) SILT, trace sand, contains roots; dark brown; moist.		68.23		GS												
-	Hand Free stad	Hand Excavated Shovel	(ML) SILT, some sand, trace gravel; brown; moist.		<u>68.01</u> 0.23	G2	GS												-
-			BEDROCK		67.83 0.40 67.73														-
-	1		End of Test Pit. (Practical Refusal) Environmental jar samples approx. depth: E1 - 0.0m to 0.2m E2 - 0.2m to 0.4m		0.51														-
Vational IM Server GINT_GAL_WTIONALM Unique Project ID: Output Form:BC_TESTPIT WITH PHOTO_UXYoung_94/15																			
National IM Server:GIN	DEP		SCALE						D ASS	olde	er ates	S	OIL CL	ASSIFI	CATION	LOO	em: Gac Gged: T Ked: RC	M	REV: 0

CL PF	IENT ROJE	T: (ECT	No.: 13-1447-0516 / 4000 / 4300 City of Nanaimo Colliery Dam Auxilliary Spillway			RE	C	OF									I		ET 1 OF 1 : Geodetic
			N: Nanaimo, B.C. 2.44 E: 430049.34 UTM NAD83 Zone: 10 ded by: Herold Engineering Limited				I	INCI	-INATION: -90'		U								
		Т	SOIL PROFILE			SAN			SHEAR STREI Cu, kPa		nat V. + rem V. ⊕	Q - ● U - ●	GR	ADATIO	N %		Qzz	ں _ا	PIEZOMETER, STANDPIPE, THERMISTOR
DEPTH SCALE METRES	EXCAVATION	METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	20 - WATER C Wp I	40 0 ONTENT	Pocket F 50 8 PERCEN	Pen - ■ 0 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
— o			Ground Surface (ML) SILT, trace sand, contains roots; dark brown; moist.		68.00 0.00														
-	Hand Excavated	Shovel	 - 0.46m diameter boulder encountered at approx. 0.5m depth. - Bedrock encountered at 0.71m depth. 			G1	GS												-
1			End of Test Pit. (Practical Refusal) Environmental jar samples approx. depth: E1 - 0.2m to 0.3m		67.29 0.71														-
DE																			
	EPTH : 10		CALE						A s	olde	er ates	S	OIL CL	ASSIFI	CATIO		em: gac Gged: T Ked: RC	M	REV: 0

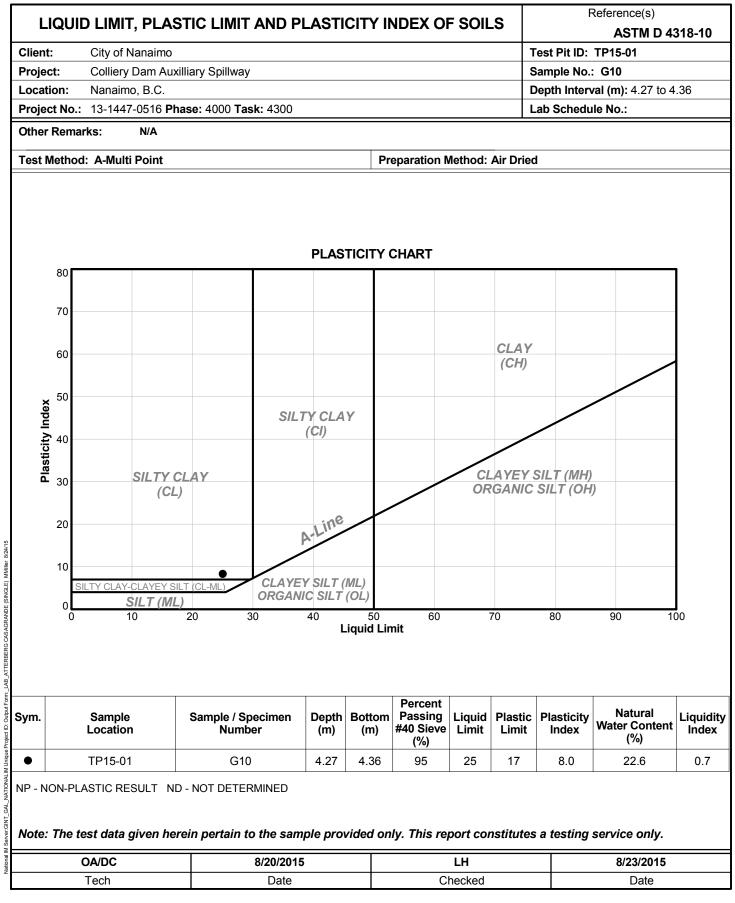
CLI	EN	JECT No.: 13-1447-0516 / 4000 / 4300 NT: City of Nanaimo		F	REC	co	RD	0	F BORE	HOLE	: BH1	15-01									1 OF 2 Geodetic	
LO	CAT	JECT: Colliery Dam Auxilliary Spillway XTION: Nanaimo, B.C. 46371.48 E: 429997.32 UTM NAD83 Zone: Provided by: Herold Engineering Limited	10						DRILLING [DATE: Au	gust 18-1	9, 2015					SA	Ampl	ER F	НАММ	ER, 64kg; DROP	, 762mm
					5		LINA PLES		DN: -90° WATEF	CONTEN		NT	c			ON % IZE <= 0		-			PIEZOMET	TER,
DEPTH SCALE METRES	DRILLING RIC	OOUL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY %	BLOWS/0.3m	Wp ⊢ 10 SHEAR STF Cu, kPa 20	RENGTH	NP - No 30 4 nat V. + rem V. ⊕ Pocket	Q - ● U - ●	GRAVEL	SAND	FINES	SILT	CLAY	PLASTICITY INDEX %	ORGANIC CONTENT %	ADDITIONAL LAB. TESTING	STANDPI OR THERMIST INSTALLAT	OR
0		Ground Surface TOPSOIL	<u>71</u> 7	74.85			_														Flush Mount	- XX - XX -
- - - -		(SW/GW) gravely SAND to SAND and GRAVEL, fine to coarse, sub-rounded to sub-angular gravel, fine to coarse sand, trace silt; brown-grey; moist, compact.		0.15																	Well Cover	
					1	SS	35	HB													Bentonite Pellets	
- - - - - - - - - - 3		(SP-SM) SAND, fine to medium, some silt; grey; moist, compact.		72.10		SS	45	19													Filter Sand	
- 3 																					8/21/2015 	
- - - - - -	HT-750 Track Mounted Rotary Drill	(CL) sandy SILTY CLAY, fine to coarse sand; grey; w>PL, very stiff.		69.97	3	SS	8	46													Bentonite Pellets	
- 5 -	ck Mount	(CL) sandy SILTY CLAY, fine to coarse sand; grey; w>PL, very stiff.		4.88																		
-	HT-750 Tra	(SM) SILTY SAND, fine; brown-grey; moist, very dense.		69.51 5.33		SS	100	68					1	75	24						Filter Sand	
				· · · ·																	2" Schedule 80 Slotted PVC Pipe	
		(SW/ML) SAND and SILT, fine to coarse sand, some fine to coarse sub-rounded to angular gravel; grey; moist, very dense. (Till-like)		. 67.84 7.01		SS	92	73					10	49	41	32	9				Filter Sand	
					6	SS	14	>50													Bentonite Pellets	
					7	SS	85	>100													Filter Sand	
		CONTINUED NEXT PAGE										SOIL		00151			Vetr					REV:
DE		TH SCALE 10						Ĵ	B ASS	older ociate	25						LO	GGEI	D: CF	ł		0 0

0	CLIE	NT:	T No.: 13-1447-0516 / 4000 / 4300 City of Nanaimo		F	REC	co	RD	0	F BOF	REH	OLE	: BH′	15-01									2 OF 2 Geodetic	
L	.00	ATIC	T: Colliery Dam Auxilliary Spillway N: Nanaimo, B.C. 71.48 E: 429997.32 UTM NAD83 Zone: 1 ided by: Herold Engineering Limited	0						DRILLIN	G DA1	ΓE: Au	gust 18-'	19, 2015					SA		FRH	IAMMI	ER, 64kg; DROP	762mm
								DLIN PLES		0N: -90° WAT	ER CO		T PERCE	NT	CI.4	GRA		ON %			%		PIEZOMET	ER,
DEPTH SCALE METRES		DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	BLOWS/0.3m	Wp H 10 SHEAR S Cu, kPa 20	2 STREN 4	IGTH	NP - No 30 2 nat V. + rem V. ⊕ Pocket	Q - ● U - ●	GRAVEL	SAND	FINES	SILT	CLAY	PLASTICITY INDEX %	ORGANIC CONTENT	ADDITIONAL LAB. TESTING	STANDPII OR THERMIST INSTALLAT	OR
- 1 - - - - - - - - - - - 1			(SM/ML) SAND and SILT, fine to coarse sand, some fine to coarse sub-rounded to angular gravel; grey; moist, very dense. (Till-like) (continued)						>100														Filter Sand	
	2		(CL+SM) SILTY CLAY, trace sand, fissured; grey; w <pl, stiff.<br="" very="">thickly laminated with SILTY SAND, fine; grey; moist, very dense.</pl,>		63.57 11.28	8	SS	100	>100														Bentonite Pellets	
- - - - - - - - - - -	3	Mud Rotary	(SM+ML) SILTY SAND, fine; grey; moist, very dense with interlayers of gravelly SILTY SAND, fine to coarse sand, fine to coarse sub-angular to angular gravel; and sandy SILTY CLAY, fine to coarse sand, trace coarse sub-rounded gravel.		62.04 12.80	9	SS	100	>100														Filter Sand	
	4 5	121mm Tricone Mud Rotary				10	SS	100	>100														Bentonite Pellets	
- - - - - - - - - - - - -	6					11	SS	100	>100														Filter Sand	
	7				57.47 17.37																		Bentonite Pellets	
			End of Borehole.																					
	DEP		SCALE	1	1	I			Ē	D As	fol soc	der	es	SOIL	CLAS	SSIFI	L CATI		LOC	i EM: G GGEI KED:	D: CF	ł		rev: 0

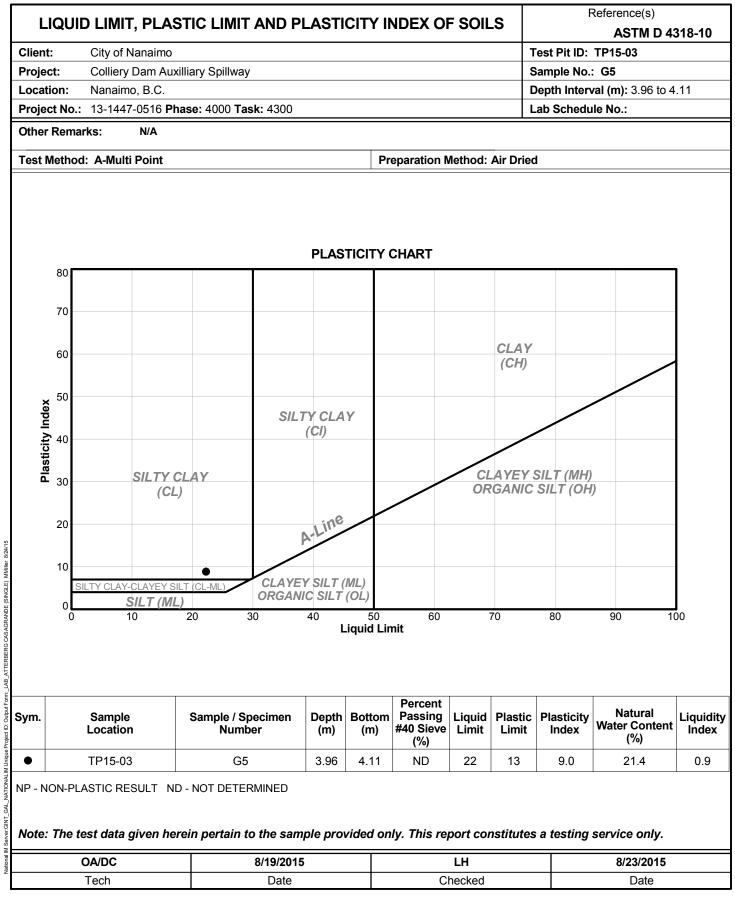
			No.: 13-1447-0516 / 4000 / 4300		F	REC	co	RD	0	F BC	REF	IOLE	: BH′	15-02									1 OF 2	
PR LC	CA	ECT	City of Nanaimo ⁻ : Colliery Dam Auxilliary Spillway N: Nanaimo, B.C.							DRILLI	NG DA	TE: Auç	gust 20-2	21, 2015							Di		Geodetic	
N: Sur	544 vey F	1637 Provid	8.95 E: 430012.86 UTM NAD83 Zone: 10 ded by: Herold Engineering Limited	0			INC	CLIN	ATIC	DN: -90	0								SA	AMPL	ER F	HAMM	ER, 64kg; DROP	, 762mm
Щ	Q	DOH.	SOIL PROFILE				SAM	PLES	6	W Wr		ONTENT	F PERCE	INT WI	CL	GRA	DATI IICLE S	ON % IZE <= 0	0.002	EX %	ENT %	4G L	PIEZOMET STANDPI	
DEPTH SCALE METRES	DRILLING RIG	DRILLING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	BLOWS/0.3m	1	0 2 R STREM a	2 <u>0 :</u> NGTH I	NP - No 30 4 nat V. + rem V. ⊕ Pocket	on-Plastic 4ρ	GRAVEL	SAND	FINES	SILT	CLAY	PLASTICITY INDEX %	ORGANIC CONTENT	ADDITIONAL LAB. TESTING	OR THERMIST INSTALLAT	
— o			Ground Surface TOPSOIL	1 1 1 / Y	74.55																		Et als Mar at	
			(SP-SM) gravelly SAND, fine to coarse, sub-angular to angular gravel, some silt; brown; moist, compact.		0.15																		Flush Mount Well Cover	
						1	SS	58	19														Bentonite Pellets	
2			(SP-SM) SAND, fine to medium, some silt; brown; moist, compact.		71.96	2	SS	70	HB														Filter Sand	
						3	SS	79	21														8/21/2015	
-	ted Rotary Drill	Mud Rotary	(CL) sandy SILTY CLAY, fine to coarse sand; grey; w>PL, soft.		69.98 4.57	-																	₽entonite Pellets	
5	HT-750 Track Mounted Rotary Drill	159mm Tricone Mud Rotary				4	SS	100	₩Н		Ł	a								12			Filter Oracl	
			(SM) gravelly SILTY SAND, fine to coarse sand, fine, angular gravel; brown-grey, moist, dense.		68.61 5.94	-																	Filter Sand	
			(SM/GM) SILTY SAND and	0	67.31 7.24	5	ss	62	40						14	64	22						80 Slotted PVC Pipe	
8			GRAVEĹ, fine to coarse sand, fine to coarse sub-angular to angular gravel; grey; moist, very dense. [Till-like]			6	SS	100	>100						38	42	20	15	5				Bentonite	
9			(CI/SC) SILTY CLAY and SAND, fine to coarse, trace fine to coarse, sub-angular to angular gravel; grey; w>PL, very stiff. [Till-like]	· · · · · · · · · · · · · · · · · · ·	65.41 9.14	-		0	=НВ=														Pellets Filter Sand	
- 10	۴I	└┟			+	<u>-</u> -		-	-		 _	+	-	+			┣		┣ —		+-	<u> </u>		12-31-
	: 50		CALE			<u> </u>			G	Ø A	Gol	der ciate	25	SOIL	CLA	SSIFI	CATI		LO	 EM: (GGEI KED:	D: CF	ł		REV: 0

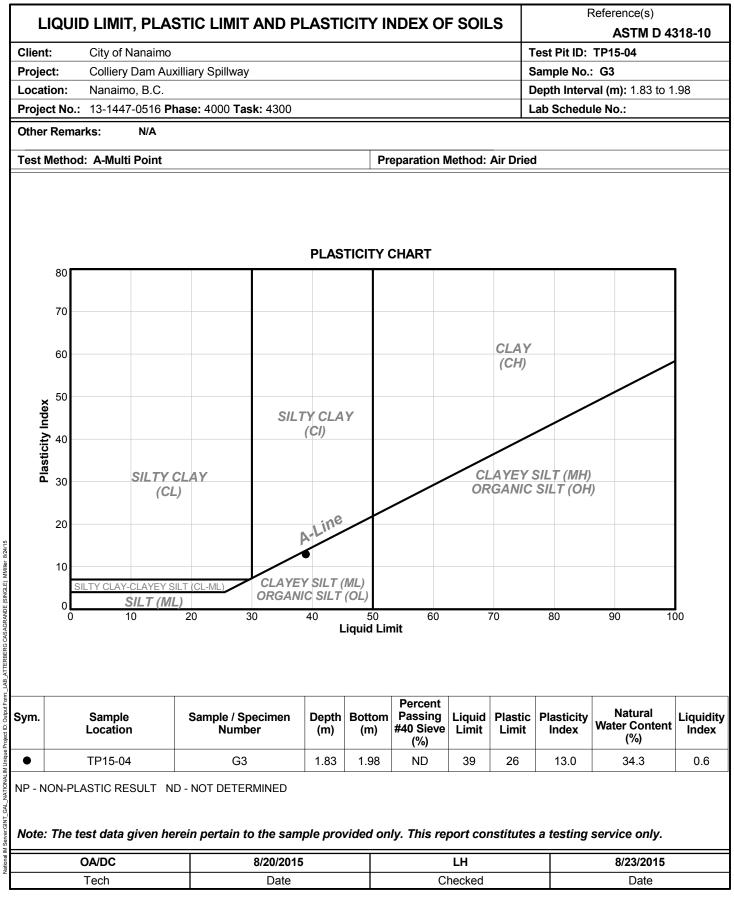
			Г No.: 13-1447-0516 / 4000 / 4300 City of Nanaimo		F	RE	со	R	00	F BC	REF	IOLE	: BH	15-02									2 OF 2 Geodetic	
PF LC	RO C	JEC ATIO	Γ: Colliery Dam Auxilliary Spillway N: Nanaimo, B.C.							DRILLI	NG DA	TE: Au	gust 20-	21, 2015							D.		Geodelic	
N: Su	_		78.95 E: 430012.86 UTM NAD83 Zone: 10 ded by: Herold Engineering Limited)		-	IN	CLIN	IATIO	<u> 201: -90</u>											-	HAMM	ER, 64kg; DROP	
SALE		DHUD	SOIL PROFILE	F	1		SAM			W W		W		WI	<u> </u>	GRA	DATIO	ON % IZE <= 0	0.002	DEX %	TENT %	ING	PIEZOMET STANDPI OR	
DEPTH SCALE METRES		DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY %	BLOWS/0.3m	SHEAF Cu, kP	R STREM a	NGTH	nat V. + rem V. ∉ Pocket	- Plastic 40 - Q - ● - U - ● Pen - ■ 80	GRAVEL	SAND	FINES	SILT	CLAY	PLASTICITY INDEX %	ORGANIC CONTENT %	ADDITIONAL LAB. TESTING	THERMIST	
- 10	, _		(CI/SC) SILTY CLAY and SAND, fine																					
-			to coarse, trace fine to coarse, sub-angular to angular gravel; grey; w>PL, very stiff. [Til-like] (continued)																				Filter Sand	
- - 11	HT-750 Track Mounted Botsov Drill	otary totary																						
-	ounted D	159mm Tricone Mud Rotary				8 9	GS SS		>100						2	45	53	29	24	18			Bentonite	
-	Track M	mm Trico																					Pellets	
- 12 - 12 	нт.76(150																					Slough	
13 End of Borehole. 12.81 100 110															- 12001 - -									
															-									
															-									
															-									
															-									
-																								-
15 - -	5																							
-																								-
- - - 16	;																							-
-																								-
-																								-
- - 17 -																								-
																								-
																								-
- 18 - -	5																							
																								-
- - - - 19	,																							-
																								-
																								-
20	,																							_
	FP	<u> </u> דוו פ	CALE	1	1	1	1	L					1	SOIL	L CLAS	l SSIFI	L CATI	I ON S			J GACS D: CF			REV:
	: {		· · · · · · · · · · · · · · · · · · ·						V	Ø	Gol <u>sso</u>	der ciato	es					С	HEC					0

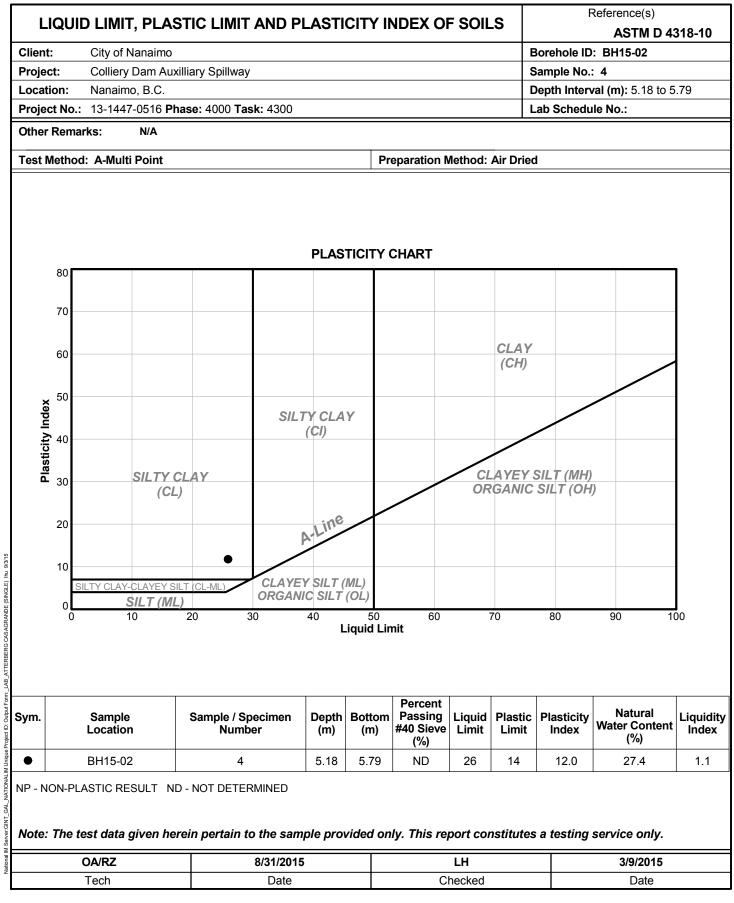
PROJECT No.: 13-1447-0		RE	CO	RD	of Bo	OREHOL	E: BH15	5-03							1 OF 2	
CLIENT: City of Nanaimo PROJECT: Colliery Dam	Auxilliary Spillway				DRILL	ING DATE: /	August 17-18,	2015					D	ATUM	Geodetic	
LOCATION: Nanaimo, B. N: 5446359.92 E: 430020 Survey Provided by: Herold Engin	0. 0.65 UTM NAD83 Zone: 10 eering Limited			~								SAM	PLER H	HAMM	ER, 64kg; DROP, 762mm	n
	SOIL PROFILE			<u>JLINA</u> IPLES	<u>FION: -90</u> V	ATER CONTE	INT PERCENT		GRA LAY PAR		DN % ZE <= 0.0	02 ×	% L	()	PIEZOMETER, STANDPIPE	-
DEPTH SCALE METRES DRILLING METHOD DRILLING METHOD	ESCRIPTION	ELEV. DEPTH (m)	TYPE	RECOVERY %	SHEA Cu, kł	1ρ 2ρ R STRENGTH	₩ ₩ NP - Noŋ-F 30 40 nat V. + C rem V. ⊕ U Pocket Per 60 80	Plastic	SAND	FINES	SILT		ORGANIC CONTENT %	ADDITIONAL LAB. TESTING	OR THERMISTOR INSTALLATION	
and GRAVEL, sub-rounded t brown; moist,		1	SS	77 >	50										Soil 😥 🔅	
gravel, fine to	D, some silt, trace medium sand, fine to igular gravel; ioist, compact to dense.		2 SS	71 4	0											
(CL) SILTY Cl (CL) SILTY Cl grey; w>PL, so	_AY, trace fine sand; oft.	69.63 4.42		83 2	6									(Cement-Bentonite Grout	
Coarse, trace g compact. Weathered Bu 6 Bedrock Enco Record of DR	and SAND, fine to gravel; grey; moist, edrock untered. Refer to ILLHOLE log for f rock description.	68.79 4/ 5.26 4/ 68.41 5.64 4/ 67.95 6.10	B ss	88 1	6			1	35	64	54	10				
DEPTH SCALE 1 : 50				(Ð	Golde		SOIL CLA	ASSIFI	CATI		LOGG	ED: CF	ર	REV:	

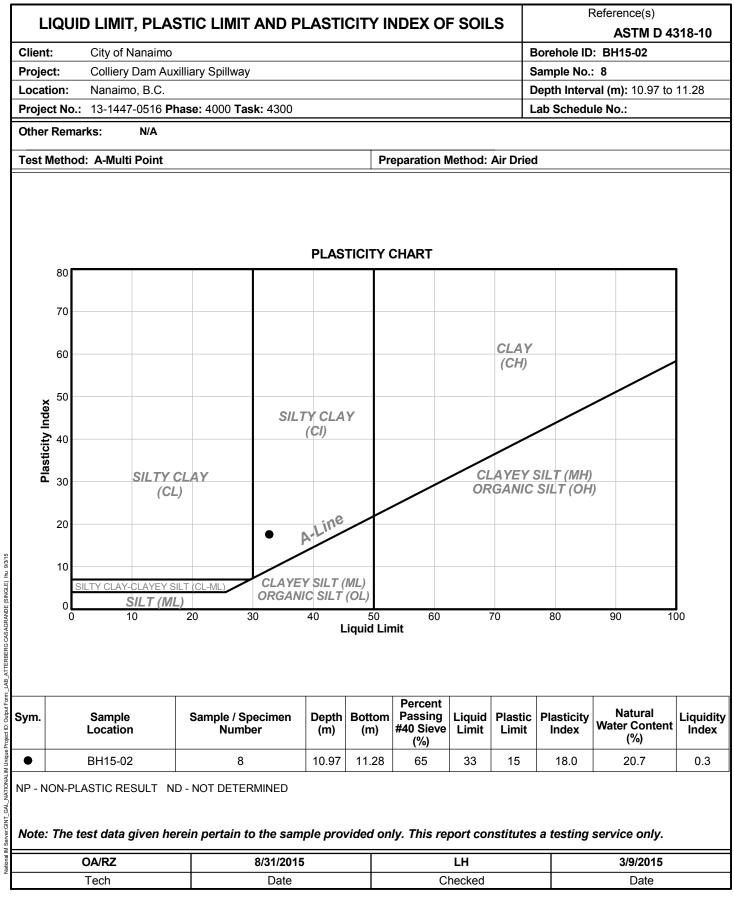

CL PR		ECT No.: 13-1447-0516 / 4000 / 4300 IT: City of Nanaimo ECT: Colliery Dam Auxilliary Spillway TION: Nanaimo, B.C.		F	RE	со	RD	0									5 H1 17-1								2 OF 2 : Geodetic
		16359.92 E: 430020.65 UTM NAD83 Zone: Provided by: Herold Engineering Limited						Refe	er to	"Lit	holo						nnica					c nd notes.	 / Gouge	Shear	PIEZOMETER, STANDPIPE OR
DEPTH SCALE METRES	DRILLING RIG		SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.		II ROCK ENGT 문자			HER SATION	ING M4M-ON	TO COF	REC ITAL RE %		RY RQE %	- 6	FRACTURE INDEX PER 0.3	DIF (b)	190 (also (also 70 (also 70 (a	DIF C 4 (a	P w.r.t. XXIS Ilpha)	ISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	 Fault / Breccia / Gouge	Broken Lost Shee	THERMISTOR
		Cont'd from Record of Borehole. CONGLOMERATE, fresh, massive; grey; sub-rounded to sub-angular clasts to ~40mm in sandy matrix, strong.																							Cement-Bentonite Grout
		End of DRILLHOLE.		8.84																					
	:PTF	H SCALE	_ I	I	I			G			G		ld <u>ci</u>	er at	⊥⊥ <u>es</u>					<u> </u>		LOGGED			REV:

Annex B Laboratory Test Results




300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com


300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com


300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com

300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com

300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com

		S	SUMMARY OF	PARTICLE	SIZE DISTRIE	BUTION			Reference(s) ASTM C136					
Client:	City of Nar	naimo						Sample Loca	tion: TP15-01					
Project:	Colliery Da	am Auxilliary Spillwa	ay					Sample No.:	G2					
Location:	Nanaimo,	B.C.						Depth Interv	al (m): 1.22 to 1.46					
Project No.:	13-1447-0	516 Phase: 4000 T	ask: 4300					Lab Schedul	e No.:					
		ening (inches)		e (meshes / inch)		Hydrometer	Legend							
24 100		3 1 1/2 3/4 3/8	4 10 20	40 60 100 20	0	USCS Particle Size Scale	Siev	re Size	rticle Size Percent Passing					
							(USS) 6"	(mm) (mm) Passing 100.0					
90							3.5"	88.9	100.0					
							3"	76.2	73.3					
80							2"	50.8	60.9					
							1 1/2"	38.1	49.1					
70							1"	25.4	31.7					
		N					3/4"	19.1	23.8					
las		$ \mathbf{N} $					1/2"	12.7	19.7					
Percent Finer by Mass							3/8" #4 US ME	9.5 SH 4.75	16.4					
a		N					#4 US ME		7.1					
e 50							#10 US ME		3.9					
							#40 US ME		2.2					
5 40							#60 US ME		1.3					
erc erc							#100 US MI	ESH 0.15	0.9					
							#140 US MI	ESH 0.106	0.6					
30							#200 US MI	ESH 0.075	0.5					
20		A A A												
			┝╋ <u>┥</u> ╡┊┊┊┊											
10														
	0 100 10 10 10 10 10 10 10 10													
BOULDEF	R COBBLE	GRAVEL Coarse Fine	S Coarse Medium	AND Fine		FINES (Silt, Clay)								
			RZ	8/18	8/2015	LH	8/23	/2015						
		Т	ech		late	Checked	D	ate						

Golder Associates Ltd. 300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com

		S	UMMARY OF	PARTICLE	SIZE DISTRIB	UTION				Refere ASTM	nce(s) / C136
Client: C	City of Nanaii	no							Sample L	ocation:	TP15-01
Project: C	Colliery Dam	Auxilliary Spillwa	у						Sample N	No.:	G8
Location: N	lanaimo, B.C).							Depth In	terval (m):	3.05 to 3.35
Project No.: 1	3-1447-0516	6 Phase: 4000 Ta	isk: 4300						Lab Sche	edule No.:	
	Size of Openii	na (inches)	U.S. Sieve Size	(meshes / inch)		Hydrometer		Legend			
24 12	6 3	1 1/2 3/4 3/8	4 10 20	40 60 100 20	0	USCS Particl	e Size Scale		e Size	Particle Size (mm)	Percent Passing
				1				6"	152.4	. ,	100.0
90								3.5"	88.9		100.0
								3"	76.2		100.0
80								2"	50.8		100.0
								1 1/2"	38.1		100.0
70								1"	25.4 19.1		100.0 100.0
Percent Finer by Mass								1/2"	19.1		100.0
								3/8"	9.5		100.0
_ <u>ک</u>								#4 US MES			99.3
								#10 US ME	SH 2		98.8
								#20 US ME	SH 0.85		98.4
								#40 US ME	SH 0.425		94.6
9 40								#60 US ME			70.3
e				• •				#100 US ME			35.4
30				\				#140 US ME			<u>19.4</u> 9.7
20 10 0	100	10						#200 US ME	<u>5H 0.075</u>		9.7
		GRAVEL	_	rticle Size (mm	0.01)	0.001	0.000	1			
BOULDER	COBBLE	Coarse Fine	Coarse Medium	Fine		FINES (Silt, Clay)					
		F	Z	8/18	/2015	LH		8/23	/2015		
		Τε	ch	D	ate	Checked	d	D	ate		

			SL	JMMA	ry of p	ARTICLE	SIZE DISTRIB	UTION				Refere ASTN	ence(s) I D 422
lient:	City of Nan	aimo								Si	ample L	ocation:	TP15-01
roject:	Colliery Da	m Auxillia	ry Spillway							Si	ample N	lo.:	G10
ocation:	Nanaimo, E		, , ,								-		4.27 to 4.36
	13-1447-05		. 4000 Tas	k. 1300							-	dule No.:	
	13-1447-00	TO Fliase	. 4000 Tas	5K. 4300									
	Size of Ope			U.S. S		neshes / inch)		Hydrometer		Legend			
100		1 1/2 3	3/4 3/8	4 10 • • •	20 4	0 60 100 20	00	USCS Particle	Size Scale	Sieve S (USS)	ize (mm)	Particle Size (mm)	Percent Passing
										6"	152.4		100.0
90										3.5"	88.9		100.0
						🖌 🎽				3"	76.2		100.0
30						<u> </u>			+ +	2"	50.8		100.0
										1 1/2"	38.1		100.0
ro	┨ │ │ │ ┃						N			1"	25.4		100.0
60										3/4"	19.1 12.7		100.0 99.7
							$ \mathbf{N} = \mathbf{N} $			3/8"	9.5		99.4
0										#4 US MESH	4.75		98.9
										#10 US MESH	2		97.7
50										#20 US MESH	0.85		96.0
										#40 US MESH	0.425		94.6
10										#60 US MESH	0.25		93.2
										#100 US MESH	0.15		90.4
										#140 US MESH	0.106		84.3
0										#200 US MESH	0.075		74.2
												0.0580	67.5
0	╉┝╌┝╢								+ +			0.0424	60.0
												0.0308	53.5
o									<u> </u>			0.0200	46.9 39.5
												0.0119	39.5
0												0.0062	29.2
	100		10		1	cle Size (mr	0.01	0.001	0.0001			0.0044	25.4
					Parti	cie Size (mm	1)					0.0031	21.7
		GRA	AVEL		SAND)						0.0013	14.8
BOULDER	COBBLE	Coarse	Fine	Coarse	Medium	Fine		FINES (Silt, Clay)		L			·]
			AZ/C	DA		8/19	/2015	LH		8/23/20	15		
		Tech					ate	Checked		Date			

			:	SUM	MARY	OF F	PART		SIZ	ED	ISTR	lBU	JTIO	N						ence(s) // C136	
Client:	City of Na	naimo																Sample	Location:	TP15-02	
Project:	Colliery Da	am Auxill	liary Spillw	/ay														Sample	No.:	G1	
Location:	Nanaimo,	B.C.																Depth Ir	nterval (m):	0.70 to 0.85	
Project No.:			se: 4000 ⁻	Task:	4300														edule No.:		
	Size of Op				J.S. Sieve		nochoo	(inch)					Hydron	actor			Legend				
24 100			3/4 3/8		10			100 20	00						Particle	Size Scale	Sie	e Size	Particle Size	Percent	
		Λ															(USS		(mm)	Passing	
90												4444					6" 3.5"	152.4 88.9		100.0	
		\															3.5	76.2		100.0	
80																	2"	50.8		78.8	
		•										i					1 1/2"	38.1		68.3	
		I \															1"	25.4		63.1	
ه ⁷⁰														+ +			3/4"	19.1		54.2	
as																	1/2"	12.7		40.6	
Percent Finer by Mass												 -					3/8"	9.5		35.4	
â																	#4 US ME			25.3	
Je 50																	#10 US M			16.5	
Fir																	#20 US MI			10.5	
t u																	#40 US M			7.4 5.2	
9 40 2 40																	#100 US M			3.7	
Pe			R														#140 US M			2.6	
30				\mathbb{N}								i++++-					#200 US M			1.8	
20																					
10							• •	•••													
	100	I	10					0.1 ze (mn	1)		0.0	J1		0.00)1	0.000	1				
BOULDEF	R COBBLE	Coarse	Fine	Co	barse M	SANI ledium	1 I	ine				F	FINES (Silt, Clay)							
				RZ				8/19	/201	5		T			LH		8/23	/2015			
			-	Tech				D	ate					Cł	necked			ate			

Golder Associates Ltd. 300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com

SUMMA	ARY OF PARTICLE SIZE DISTRIBU	JTION			ence(s) M C136
Client: City of Nanaimo				Sample Location:	TP15-02
Project: Colliery Dam Auxilliary Spillway				Sample No.:	G4
Location: Nanaimo, B.C.				Depth Interval (m)	: 3.20 to 3.35
Project No.: 13-1447-0516 Phase: 4000 Task: 4300	0			Lab Schedule No.	
			Legend		
	Sieve Size (meshes / inch)	Hydrometer USCS Particle Size Scale	Legenu	Particle	
			Siev (USS)	e Size Size	Percent Passing
			6"	152.4	100.0
90			3.5"	88.9	100.0
			3"	76.2	100.0
80			2"	50.8	100.0
			1 1/2"	38.1	100.0
70			1"	25.4	97.7
g ⁷⁰			3/4"	19.1	97.0
Percent Finer by Mass			1/2"	12.7	92.9
			3/8"	9.5	87.7
	◀		#4 US MES		74.0
	+ 🔪 +		#10 US ME		56.7 41.3
	N		#40 US ME		28.9
			#60 US ME		16.4
			#100 US ME		6.6
			#140 US ME	SH 0.106	2.9
30			#200 US ME	SH 0.075	1.4
20	· · · · · · · · · · · · · · · · · · ·				
10					
	¹ 0.1 0.01 Particle Size (mm)	0.001 0.0001			
GRAVEL	SAND				
BOULDER COBBLE Coarse Fine Coarse	Medium Fine	FINES (Silt, Clay)			
RZ	8/19/2015	LH	8/23/	2015	
National IM Server-GINT_GAL_NATIONALIM Unique Project ID:974 Output Form:_LAB_PARTICLE SIZE (W/ GRAD	Date	Checked	Da	ate	

			SUMMARY OF	PARTICLES	SIZE DISTRIB	UTION				Refere ASTN	nce(s) I C136
Client:	City of Nan	aimo							Sample Lo	ocation:	TP15-03
Project:	Colliery Da	m Auxilliary Spill	way						Sample N	o.:	G3
Location:	Nanaimo, E	3.C.							Depth Inte	erval (m):	2.44 to 2.59
Project No.:	13-1447-05	516 Phase: 4000	Task: 4300						Lab Sche	dule No.:	
		ning (inches)		e (meshes / inch)		Hydrometer		Legend			
24				40 60 100 200		-	article Size Scale		e Size (mm)	Particle Size (mm)	Percent Passing
								6"	152.4	. ,	100.0
90								3.5"	88.9		100.0
								3"	76.2		100.0
80				- ₹				2"	50.8		100.0
								1 1/2"	38.1 25.4		100.0
70								3/4"	19.1		98.2
Percent Finer by Mass								1/2"	12.7		96.8
ё ₆₀								3/8"	9.5		95.5
λq								#4 US MES	H 4.75		92.9
								#10 US MES	SH 2		90.2
L DU								#20 US MES			86.7
<u> </u>								#40 US MES			81.5
<u></u> 9 40				• • • • • • • • • • • • • • • • • • •				#60 US MES #100 US ME			65.7 38.6
Le Le								#140 US ME			20.7
30				···· · · · · · · · · · · · · · · · · ·				#200 US ME			8.8
20				│							
				IIII NI							
10				N							
0											
	100	10	1 Pa	rticle Size (mm)	0.01	0.001	0.000	1			
BOULDEF	R COBBLE	GRAVEL	S/	AND		FINES (Silt, Clay)					
		Coarse Fine	e Coarse Medium	Fine							
			RZ	8/19/	2015	L	.H	8/23/	2015		
			Tech	Da	ate	Che	ecked	Da	ate		

Golder Associates Ltd. 300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com

			รเ	JMMAR	Y OF P	ARTICLE	SIZE DISTRIB	UTION					Refere ASTM	nce(s) I D 422
Client:	City of Na	naimo									S	ample L	ocation:	TP15-03
Project:	Colliery D	am Auxilliar	y Spillway								s	ample N	o.:	G5
Location:	Nanaimo,										D	epth Int	erval (m):	3.96 to 4.11
	: 13-1447-0		· 4000 Tas	k · 4300									dule No.:	
110,000,110.														
		ening (inche				eshes / inch)		Hydrometer			Legend			
100	12 6	3 1 1/2 3 <i>i</i>		4 10	20 4			USC	S Particle Siz	ze Scale	Sieve S (USS)	Size (mm)	Particle Size (mm)	Percent Passing
											6"	152.4		100.0
90											3.5"	88.9		100.0
							N				3"	76.2		100.0
80											2"	50.8		100.0
							N				1 1/2"	38.1		100.0
70											1"	25.4		100.0
							🌂 🛛				3/4"	19.1		100.0
Percent Finer by Mass											1/2" 3/8"	12.7 9.5		100.0 99.8
											#4 US MESH	4.75		99.3
2 2											#10 US MESH	2		98.9
e 50											#20 US MESH	0.85		98.4
											#40 US MESH	0.425		98.0
u ₄₀											#60 US MESH	0.25		97.4
2 io								\mathbf{N}			#100 US MESH	0.15		96.5
Ре											#140 US MESH	0.106		94.1
30											#200 US MESH	0.075		88.6
													0.0561	80.2
20													0.0411	72.4
													0.0297	67.5
10													0.0194	59.7
													0.0117	49.0
													0.0084	44.2
0	100		10		1	0.1	0.01	C	.001	0.0001			0.0060	39.4
					Partic	cle Size (mn	ı)						0.0043	32.9
		GRA			SAND								0.0031	28.9
BOULDE	R COBBLE	Coarse	Fine	Coarse	Medium	Fine		FINES (Silt, Clay)				0.0013	13.9
			0/	<u> </u>		8/24	/2015		LH	<u> </u>	8/27/20)15		
			Tec				Date		Checked		Date			
National IM Server GIN	IT GAL NATIONALIM Unig	ue Project ID:074 Output E			NS) MMiller 8/27/15	L			CHECKEU		Date	•		

		S	UMMARY OF	PARTICLE S	SIZE DISTRIB	UTION				Refere ASTI	ence(s) // C136	
Client:	City of Nana	imo							Sample I	_ocation:	BH15-01	
Project:	Colliery Dam	n Auxilliary Spillwa	/						Sample I	No.:	4 Specimen: 4B	
Location:	Nanaimo, B.	C.							Depth In	terval (m):	5.33 to 5.64	
Project No.:	: 13-1447-051	6 Phase: 4000 Ta	sk: 4300						Lab Sche	edule No.:		
	Size of Open			(meshes / inch)		Hydrometer		Legenc	1			_
24 100		1 1/2 3/4 3/8	4 10 20	40 60 100 200)	USCS Particle	Size Scale	Siev	e Size	Particle Size	Percent Passing	
				•				(USS) 6"	(mm) 152.4	(mm)	100.0	
90				N				3.5"	88.9		100.0	
								3"	76.2		100.0	
80								2"	50.8		100.0	
								1 1/2"	38.1		100.0	
70								1"	25.4		100.0	
								3/4"	19.1		100.0	
las								1/2"	12.7		100.0	
Percent Finer by Mass								3/8"	9.5		99.8	
								#4 US ME			99.1 98.6	
ខ 50				\				#10 US ME			98.3	
								#40 US ME			97.7	
u 40								#60 US ME			94.8	
								#100 US ME	SH 0.15		77.0	
								#140 US ME	SH 0.106		48.0	
30								#200 US ME	SH 0.075		24.3	
20												
10												
	100	10	Pa	nticle Size (mm)	0.01	0.001	0.0001	I				
BOULDEF	R COBBLE	GRAVEL		ND		FINES (Silt, Clay)						
		Coarse Fine	Coarse Medium	Fine								
		R	Z	8/31/	2015	LH		3/9/	2015			
		Те	ch	Da	ate	Checked		D	ate			

				ę	SU	MMA	RY	OF P	ART	ICLE	SIZ	ZE D	STRI	BUTI	ON								ence(s) / D 422	
lient:	City of	Vanaimo																		s	ample L	ocation:	BH15-01	
roject:	-	Dam Au	xilliarv	/ Spillw	av																ample N		5 Specime	n: 5B
ocation:	Nanain			- 1	- ,																		7.01 to 7.32	
	b.: 13-144		haea.	4000 T	Fael	k. 4300	<u>ו</u>															dule No.:		
	 10-1 44	-001011	nase.	+000 I	1 4 3	K. 1 000	,																	
		Opening (Size (n						Hyd	romete	r			L	egend				
00		3 11 •••	/2 3/4	4 3/8		1 1	0	20 4	0 60	100 2	200					SCS Part	ticle Si	ize Scale		Sieve S (USS)	Size (mm)	Particle Size (mm)	Percent Passing	
																				6"	152.4		100.0	
90																				3.5"	88.9		100.0	
						N	R													3"	76.2		100.0	
30		┼┨┼┼┼	+				\mathbf{h}												F	2"	50.8		100.0	
																			-	1 1/2"	38.1		100.0	
70																			-	1" 3/4"	25.4		100.0	
50								۲ 												3/4" 1/2"	19.1 12.7		96.6 94.3	
																			-	3/8"	9.5		93.3	
,0									٦										#	4 US MESH	4.75		90.0	
										∕ ∥									_	10 US MESH	2		82.9	
50																			#:	20 US MESH	0.85		74.2	
										٩									#	40 US MESH	0.425		67.1	
10											₩								#	60 US MESH	0.25		59.6	
																			-	00 US MESH	0.15		51.4	
30																			-	40 US MESH	0.106		45.7	
																			#2	200 US MESH	0.075	0.0011	41.0	
																			-			0.0641	37.0 33.7	
20																			-			0.0460	30.5	
																			-			0.0210	28.0	
0		┼┼╂┼┼┼┼	+																			0.0124	23.1	
																╹						0.0088	20.6	
0																			. [0.0063	16.6	
		00		10				¹ Parti	cle Si	0.1 ze (m i	m)		0.01			0.001		0.000	1			0.0045	13.4	
		_				L				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 											0.0032	11.0	
BOULD	ER COBBL	₌	GRA					SANE	1		4			FINE	S (Silt, C	lay)						0.0013	7.2	
		Coars	se	Fine		Coarse	Me	edium	F	ine														
					OA					9/ [,]	1/201	5				LH				3/9/20	15			
				T	Fech	h					Date					Chec	ked			Date)			

			SU	MMAR	Y OF F	PARTICL	E SIZ	E DISTRI	BU	ΓΙΟΝ							ence(s) M C136
Client:	City of Nan	aimo													Sample	Location:	BH15-02
Project:	Colliery Da	n Auxilliary S	pillway												Sample	No.:	5
ocation:	Nanaimo, E	.C.													Depth In	terval (m):	6.71 to 7.24
Project No.:	13-1447-05	16 Phase: 40	00 Tas l	k: 4300											Lab Sch	edule No.:	
	Size of Ope	ning (inches)		U.S. Sie	ve Size (r	neshes / inch	ı)		H	ydrome	ter			Legend			
100		1 1/2 3/4	3/8 4	10	20 4	40 60 100	200				USCS Pa	article	Size Scale	Siev (USS)	e Size (mm)	Particle Size (mm)	Percent Passing
														6"	152.4		100.0
90														3.5"	88.9		100.0
				\mathbb{N}										3"	76.2		100.0
80				+										2"	50.8		100.0
														1 1/2"	38.1		100.0
70														1" 3/4"	25.4 19.1		100.0 95.4
50														1/2"	19.1		93.8
30														3/8"	9.5		91.5
														#4 US ME			86.7
														#10 US ME	SH 2		80.3
50						T								#20 US ME	SH 0.85		73.4
														#40 US ME			68.6
40						+ + + \								#60 US ME			64.2
														#100 US ME			51.4
30							\mathbb{N}							#140 US ME #200 US ME			34.8 22.4
20							N							<u>17200 00 Mil</u>		1	
0	100		10		1	0	.1	0.0	 1		0.001		0.000	1			
					Parti	cle Size (r	nm)										
BOULDER	COBBLE	GRAVEL Coarse	Fine	Coarse	SANI Medium) Fine			FI	NES (Sil	, Clay)						
	<u> </u>		RZ				/31/201	15				H		2/0/	2015	<u> </u>	
						0		15									
		Project ID:974 Output Form:_L	Tech				Date				Che	cked		L D	ate		

Golder Associates Ltd. 300-3811 North Fraser Way Burnaby, British Columbia Canada V5J 5J2 Tel: (604) 412 6899 Fax: (604) 412 6816 www.golder.com

		รเ	JMMARY OF	PARTICLE S	SIZE DISTRIB	UTION				Refere ASTN	ence(s) 1 D 422	
Client:	City of Nanai	mo							Sample L	ocation:	BH15-02	
Project:	Colliery Dam	Auxilliary Spillway	,						Sample N	lo.:	6	
Location:	Nanaimo, B.C										8.23 to 8.46	
		6 Phase: 4000 Tas	sk : 4300							dule No.:		
			5K. 4000									
	Size of Openi			(meshes / inch)		Hydrometer		Legend				
100		1 1/2 3/4 3/8	4 10 20	40 60 100 200		USCS	Particle Size Scale	Siev (USS)	e Size (mm)	Particle Size (mm)	Percent Passing	
								6"	152.4		100.0	
90								3.5"	88.9		100.0	
								3"	76.2		100.0	
80	┝╋┝╌┝	++++ >++++						2"	50.8		100.0	
								1 1/2"	38.1		100.0	
70								1"	25.4		100.0	
								3/4"	19.1 12.7		89.7 78.6	
								3/8"	9.5		72.8	
Percent Finer by Mass								#4 US MES			62.1	
r h								#10 US ME			51.0	
. <u></u>⁵⁰ <u></u>								#20 US ME	SH 0.85		43.1	
Щ. Ц.								#40 US ME	SH 0.425		36.9	
H 40								#60 US ME	SH 0.25		31.3	
erc								#100 US ME	SH 0.15		26.1	
ق ₃₀								#140 US ME			22.9	
30								#200 US ME	SH 0.075		20.1	
									_	0.0667	16.3	
20										0.0474	15.3 14.4	
										0.0338	14.4	
10					── ●●					0.0216	12.5	
										0.0090	10.1	
0										0.0064	8.8	
	100	10	1 P a	rticle Size (mm)	0.01	0.0	01 0.000)1		0.0046	6.9	
										0.0032	6.0	
BOULDE		GRAVEL	SA	ND		FINES (Silt, Clay)				0.0013	4.6	
		Coarse Fine	Coarse Medium	Fine		(Oil, Oidy)						
		0/	A	9/1/2	2015		LH	3/9/2	2015			
		Тес	ch	Da	ate	C	hecked	Da	ate			

			รเ	JMM	ARY	OF P	ARTICL	E SI	ZE DIS	ribu	TION							ence(s) / D 422	
Client:	City of Nan	aimo														Sample	Location:	BH15-02	
Project:	Colliery Da	m Auxillia	ry Spillway	1												Sample	No.:	8	
ocation:	Nanaimo, E																	10.97 to 11.	28
	13-1447-05		: 4000 Tas	sk : 430	0												edule No.:		
															I				
	Size of Ope						eshes / inc			F	lydromete				Legend		1		
100			6/4 3/8		10	20 40	0 60 100	200			U	SCS Par	ticle Size	Scale	Siev (USS)	e Size (mm)	Particle Size (mm)	Percent Passing	
															6"	152.4		100.0	
90															3.5"	88.9		100.0	
					$ \rangle $										3"	76.2		100.0	
80					+										2"	50.8		100.0	
															1 1/2"	38.1		100.0	
70						\mathbb{N}									1" 3/4"	25.4 19.1		100.0	
60															1/2"	19.1		99.3	
30															3/8"	9.5		99.3	
50															#4 US MES			98.3	
								▝▝┥							#10 US ME	SH 2		90.2	
50															#20 US ME	SH 0.85		73.7	
															#40 US ME	GH 0.425		65.1	
40															#60 US ME			60.0	
															#100 US ME			56.5	
30															#140 US ME			54.7	
															#200 US ME	SH 0.075	0.0613	53.3 47.3	
												┓║║					0.0613	47.3	
20												-					0.0316	40.9	
																	0.0203	37.6	
10														<u> </u>			0.0119	34.4	
																	0.0085	31.9	
0	100		10		1					0.01		0.001		0.0001			0.0060	29.6	
	100		10		1	Partic	:le Size (mm)		0.01		0.001		0.0001			0.0043	28.1	
	+ +			+				́									0.0030	26.4	
BOULDER	COBBLE	GR4 Coarse	AVEL Fine	Coorer	Med	SAND	Fine			F	FINES (Silt, C	lay)					0.0013	21.3	
		Coarse	Fine	Coarse	Med	um	Fine												
			0/	A				9/1/20	15			LH	1		3/9/2	2015			
			Тес	ch				Date	9			Chec	ked		D	ate			

			รเ	JMMA	ry of P	ARTIC	LE SI	ZE D	ISTRIE	BUTIO	N					Refere ASTN	nce(s) I D 422	
lient:	City of Na	naimo													Sample L	ocation:	BH15-03	
roject:	Colliery D	am Auxillia	ry Spillway												Sample N	No.:	4 Specimer	n: 4B
ocation:	Nanaimo,		<u> </u>														5.26 to 5.64	
	13-1447-0		• 4000 Tas	k · 4300												edule No.:		
		ening (inche			ieve Size (n					Hydron	neter			Legend				
100		3 1 1/2 3	8/4 3/8	4 10	20 2		0 200				USCS Pa	rticle Si	ze Scale	Sieve (USS)	Size (mm)	Particle Size (mm)	Percent Passing	
														6"	152.4		100.0	
90														3.5"	88.9		100.0	
														3"	76.2		100.0	
30							¥⊪							2"	50.8		100.0	
							NIL							1 1/2"	38.1		100.0	
70														1" 3/4"	25.4		100.0	
							I							3/4"	19.1 12.7		100.0	
50							T							3/8"	9.5		99.1	
50														#4 US MESH			98.9	
														#10 US MES			98.3	
50							N							#20 US MES	H 0.85		97.6	
														#40 US MES	H 0.425		97.0	
10														#60 US MES	H 0.25		96.1	
														#100 US MES			92.3	
30														#140 US MES			79.7	
														#200 US MES	H 0.075	0.0000	64.3	
																0.0603	52.5 43.7	
20															_	0.0322	36.7	
																0.0208	31.4	
10											╲					0.0122	26.1	
																0.0088	22.6	
о ЦЦЦ Ц																0.0063	18.3	
	100		10		Parti	cle Size	0.1 (mm)		0.01		0.001		0.0001			0.0045	14.8	
				I			Ľ									0.0031	12.2	
BOULDER	COBBLE			 	SANE	i				FINES (Silt, Clay)					0.0013	8.3	
		Coarse	Fine	Coarse	Medium	Fine				<u> </u>								
			0/	A			9/1/20	15			LI	H		3/9/2	015	ĺ		
			Тес	ch			Dat	e			Che	cked		Da	te			

Sheet 1 of 1

WATER CONTENT DETERMINATION

Reference(s) **ASTM D 2216**

Client: City of Nanaimo

Colliery Dam Auxilliary Spillway

Project No.: 13-1447-0516 Phase: 4000 Task: 4300 Lab Schedule No.:

Location: Nanaimo, B.C.

Project:

Sample	Sample	Specimen	Depth	Interval	Water
Location	No.	No.	Depth (m)	Bottom (m)	Content (%)
BH15-02	4		5.18	5.79	27.4
BH15-02	8		10.97	11.28	20.7
TP15-01	G10		4.27	4.36	22.6
TP15-01	G11		4.36	4.42	18.3
TP15-02	G6		3.96	4.11	28.5
TP15-03	G4		3.35	3.51	23.0
TP15-03	G5		3.96	4.11	21.4
TP15-03	G6		4.36	4.42	18.7
TP15-04	G2		1.16	1.22	20.9
TP15-04	G3		1.83	1.98	34.3

9
Ihu 9/
RE PORT)
AB_WATER CONTENT (RI
ut Form:_
NATIONALIM Unique Project ID: Outp
National IM Server: GINT_GAL_N

3/15

LH	9/3/2015
Checked	Date

Laboratory Determination of Uniaxial Compressive Strength of Intact

Rock Core Specimens.

Summary of Test Results

ASTM D7012 Method C

Project No.:	13-1447-0516/4000/4300	Failure Modes	(5) Single Shear
Project:	Colliery Dam	(1) Simple Extension	(6) Spalling
Location:	Nanaimo, BC	(2) Multiple Extension	(7) Other
Client:	Foundex	(3) Multiple Fracturing	Note: (deg) measured from core axis
Lab ID No:	342	(4) Multiple Shear	

No.	Borehole	Sample	Depth	Dia	Ht	Area	Volume	Mass	Wet Density	Moisture	Dry Density	Maximum Load	Stress σ _u	Rock Type	Failure	e Mode
	#	#	(ft)	(mm)	(mm)	(cm²)	(cm³)	(g)	(kg/m³)	(%)	(kg/m³)	(kN)	(MPa)		Туре	(deg)
1	BH15-03	1	22'6" - 23'1"	80.39	176.97	50.76	898.24	2294.60	2555	0.89	2532	308.00	60.7	Not Provided	2/3	N/A
2	BH15-03	2	25' - 25'7"	80.41	180.17	50.78	914.94	2376.30	2597	0.79	2577	342.70	67.5	Not Provided	2/3	N/A
				The	e test data g	given hereir	n pertain to t	the sample	provided or	nly. This rep	ort constitut	es a testing servi	ice only.			
		G. Pa	atton			S	eptember '	1, 2015			L.	Perrey		September 2	2, 2015	
		TESTE	ED BY				DATE				CHE	CKED BY		DATE		

Golder Associates Ltd.

300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2

I el: 604-412-6899 Fax: 604-412-6816 www.golder.com

Uniaxial Compressive Strength of Intact Rock Core Specimens (Method C)

ASTM D7012

Project No.:	13-1447-0516/4000/4300	Borehole:	BH15-03
Project:	Colliery Dam	Sample Number:	1
Location:	Nanaimo, BC	Depth (ft):	22'6" - 23'1"
Client:	Foundex	Lab ID No:	342

Testing Re	esults	Sample Meas	surements
Max Load (kN)	308.00	Diameter (mm)	80.39
_		Height (mm)	176.97
Stress σ _u (MPa)	60.7	Area (cm²)	50.76
-		Volume (cm ³)	898.24
Pace Rate (kN/s)	1.25	Mass (g)	2294.60
-		Moisture Content (%)	0.89
Lithology	Not Provided	Wet Density (kg/m ³)	2555
-		Dry Density (kg/m ³)	2532
		Dry Density (kg/m ³)	2532

Failure Mode	Notes
	- Water content as received
Type: 2/3	Mode:
	(1) Simple Extension
Degrees:* N/A	(2) Multiple Extension
	(3) Multiple Fracturing
* Degrees measured with respect to	core axis. (4) Multiple Shear
	(5) Single Shear
The impact of any pre-existing features ults will be noted in the comment	
applicable.	(7) Other

Comments

AFTER TEST

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

G. Patton	September 1, 2015	L. Perrey	September 2, 2015
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd.

300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

Uniaxial Compressive Strength of Intact Rock Core Specimens (Method C)

ASTM D7012

Project No.:	13-1447-0516/4000/4300	Borehole:	BH15-03
Project:	Colliery Dam	Sample Number:	2
Location:	Nanaimo, BC	Depth (ft):	25' - 25'7"
Client:	Foundex	Lab ID No:	342

Testing Re	esults	Sample Measurements		
Max Load (kN)	342.70	Diameter (mm)	80.41	
		Height (mm)	180.17	
Stress σ _{u (M} Pa)	67.5	Area (cm²)	50.78	
-		Volume (cm ³)	914.94	
Pace Rate (kN/s)	1.25	Mass (g)	2376.30	
-		Moisture Content (%)	0.79	
Lithology	Not Provided	Wet Density (kg/m ³)	2597	
		Dry Density (kg/m ³)	2577	

Failure Mode	Notes
	- Water content as received
Туре: 2/3	Mode:
	(1) Simple Extension
Degrees:* N/A	(2) Multiple Extension
	(3) Multiple Fracturing
* Degrees measured with respect to core axis.	(4) Multiple Shear
	(5) Single Shear
The impact of any pre-existing feature on the test results will be noted in the comments, if	(6) Spalling
applicable.	(7) Other

Comments

AFTER TEST

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

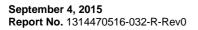
G. Patton	September 1, 2015	L. Perrey	September 2, 2015
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd.

300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

Annex C Rock Core Photograph


```
BH15-03
```


6.10 m to 8.84 m (20' to 29" ft.) depth

CITY OF NANAIMO			COLLIERY DAM NANAIMO, BC	S		
CONSULTANT	YYYY-MM-DD	2015-09-02	TITLE			
	PREPARED	C. REID	BH15-03			
Golder	DESIGN	C. REID	 — ROCK CORE PHOTOGRAPH 6.10 m to 8.84 m (20' to 29') DEPTH 			
Associates	REVIEW	T. MADDEN	PROJECT No.	PHASE	Rev.	F
	APPROVED	B. DOWNING	13-1447-0516	4000	Α	

APPENDIX B

Geotechnical Design Recommendations Technical Memorandum

 DATE
 September 4, 2015
 PROJECT No.
 1314470516-031-TM-Rev0

 TO
 Greg Beaveridge, P. Eng., Struct.Eng., M.I.Struct.E
Herold Engineering Ltd.

 CC
 Bruce Downing, P. Eng. / Toby Seward, City of Nanaimo

 FROM
 Thomas Madden, E.I.T./
Richard C. Butler, P. Eng., FEC
 EMAIL
 tmadden@golder.com

 GEOTECHNICAL DESIGN RECOMMENDATIONS
AUXILIARY SPILLWAY, LOWER COLLIERY DAM
NANAIMO. BC
 EMAIL
 tmadden@golder.com

This technical memorandum briefly summarizes the subsurface conditions encountered at the site based on our recent geotechnical investigation, and provides the recommended geotechnical parameters as input to the structural design of the proposed auxiliary spillway structure.

1.0 SEISMIC CONSIDERATIONS


1.1 Background and Proposed Auxiliary Spillway

The failure consequence classification of the Lower Dam is 'Very High' and Golder understands from discussion with the City of Nanaimo that the auxiliary is not defined as a 'post-disaster structure'. Canadian Dam Association (CDA) Dam Safety Guidelines (2007) outline that the earthquake design ground motion (EDGM) should be selected based on the consequences of dam failure. Given the failure consequence designations of the lower dam (very high) and middle dam (high), the suggested earthquake levels for use in deterministic assessments for the dam structure are a 1-in-5,000 year event and a 1-in-2,500 year event, respectively (Table 6-1, CDA Dam Safety Guidelines, 2007).

The auxiliary spillway is designed to provide additional spillway capacity without impacting the existing spillway. It would only be activated in the event of a storm event and associated high water levels within the reservoir. This secondary spillway will consist of a labyrinth weir structure located to the south of the existing spillway and is outside of the footprint of the existing dam and spillway. The labyrinth weir has plan dimensions of approximately 13.8 m by 13.0 m with a height of 3 m. Water flows over the labyrinth weir downstream beneath a bridge structure. Downstream of the bridge, the water flows through a tapered open channel into a 6 m wide open channel before discharging into Harewood Creek.

The primary function of the auxiliary spillway is to provide secondary flood routing during a storm event, is not considered a substitute spillway, and is not directly or indirectly connected to or integral with the existing spillway and dam structure as an appurtenant structure. Further, CDA Guidelines require that designs are carried out to meet the design seismic event and the design storm event, as two independent events (i.e. not concurrent).

1.2 Seismic Design Parameters

Typically dams, and appurtenant structures, are located in remote areas and require site specific seismic hazard assessments to be carried out (CDA Dam Safety Guidelines, 2007). Since the auxiliary spillway is located within an urban region and close to the Lower Mainland, is not an appurtenant structure of the Lower Dam (not connected to, or contiguous with, the Lower Dam), and in consideration of the limited size of the auxiliary spillway (less than 3 m in height), Golder recommends that seismic hazard parameters and uniform hazard spectra seismic events, comparable to that for other commercial and industrial structures designed in conformance with the current (2010) National Building Code of Canada (NBCC) be adopted for use in design of the auxiliary spillway. Following discussions with Herold Engineering, Golder proposes that a 475 year return period seismic event is adopted for serviceability limit state (SLS) design and a 2,475 year return period seismic event is adopted for ultimate limit state (ULS) design of the structure.

Site-specific seismic motion parameters for the subject site were obtained from the National Resources Canada website (*http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index-eng.php*) and are summarized in Table 1 (see also Attachment 1). The ground motion parameters have been established for two return periods that correspond to a 10 % probability chance of exceedance in 50 years (equivalent to 1 in 475 year event) and 2 % probability of exceedance in 50 years (equivalent to 1 in 2,475 year event). They correspond to Class C ground motions, for soil profiles with an average N60 count of the upper 30 m greater than 50 blows per 300 mm.

Return Period	PHGA	Sa (0.2)	Sa (0.5)	Sa (1.0)	Sa (2.0)	Approximate Magnitude
475 Years (10% Probability of exceedance in 50 years)	0.268	0.532	0.357	0.181	0.089	M6.9
2,475 Years (2% Probability of exceedance in 50 years)	0.499	1.013	0.692	0.351	0.178	M7.0

Table 1: Site Specific Probabilistic Firm-Ground Motion Parameters (Site Class C)

Note: PHGA refers to peak horizontal ground acceleration; Sa refers to spectral acceleration for a given period.

These seismic hazard parameters are derived from the probabilistic hazard model developed by the Geological Survey of Canada (GSC). This model is based on the results of extensive work conducted by the GSC. This approach is industry standard and has been adopted in the National and BC Building codes for design of buildings and structures.

Golder did not carry out a detailed seismic hazard assessment for the auxiliary spillway which may consider the proximity of known or potential faults to the site with recorded seismicity over many years. We consider the probabilistic approach to be adequate for the design of the proposed auxiliary spillway. However, Golder's technical memorandum on 'Dynamic Soil-Structure Interaction Analysis of the Colliery Dam, Nanaimo', dated July 16, 2014, outlined an assessment of the seismic behaviour of the Lower Colliery Dam when subjected to the shaking levels corresponding to the 10,000-year (equivalent to the Maximum Credible Earthquake (MCE). "Firm-ground" peak horizontal accelerations applicable for a return period of 10,000-years were estimated by combining all available data on PGA as a function of the annual probability of exceedance. Based on the available data, the PGA that corresponds to a return period of 10,000-years is established as approximately equal to 0.8g. The NBCC PGA values for the more frequent (475-year and 2,475-year) earthquake events are considered to be consistent with that for the much lower probability MCE event.

1.2.1 Ground Motions and Foundation Factors for Spillway

The ground motions provided in Table 1 are representative of a firm-ground site; that is, a site with very dense soil or soft rock in the upper 30 m of the soil profile.

Since 2006, the BC Building Code (BCBC) has adopted the use of foundation factors that are dependent on local site soil conditions, shaking level, and site period. The effects of local site conditions are characterized based on the average strength properties of the soil/rock in the upper 30 m, and six difference site classes varying from Site Class A to F have been identified. For a given site class, the effects of shaking level and period are incorporated via the short-period and long-period foundation factors Fa and Fv defined in Tables 4.1.8.4B and 4.1.8.4C of the BCBC, respectively.

Based on the results of the investigation, the average standard penetration resistance, N60, in the upper 30 m of soil column is in excess of 50 blows per 300 mm at the site. Therefore the site is considered to be Site Class C and the corresponding site-specific short period and long-period foundation factors, Fa and Fv,, are 1.0.

The subsurface conditions are considered to have a very low potential for liquefaction for both design seismic events (1 in 475 year and 1 in 2,475 year return periods).

2.0 GEOTECHNICAL ASSESSMENT

2.1 General

Based on the results of the recent geotechnical investigation, the site of the proposed labyrinth weir and box culvert or bridge spanning the auxiliary spillway is underlain by compact sand and gravel soils to depths ranging from 1.4 m to 2.6 m below ground surface. Compact sand deposits, with minor amounts of silt, underlie the coarser granular soils and extend to depths of about 3.3 m to 4.9 m at individual testholes, which in turn are underlain by soft to stiff silty clay, with varying proportions of sand. A dense to very dense sand material, with varying amounts of silt and gravel, was encountered underling the fine-grained deposits within BH15-01 and BH15-02 at depths of 7.0 m and 7.2 m, respectively.

Very dense glacial till-like soils were encountered underlying these deposits within BH15-01 and BH15-02, with both boreholes terminated within these glacial deposits at depths of 17.4 m and 12.8 m, respectively. The silty clay layer within BH15-03 was underlain by an approximate 0.3 m thick compact silty sand layer at a depth of 5.3 m. Weathered conglomerate bedrock was encountered within BH15-03 at a depth of about 5.6 m and was underlain by fresh conglomerate at 6.1 m depth that extended to the borehole termination depth of roughly 8.8 m.

Groundwater was encountered at depths of 3.6 m and 4.1 m below ground surface within BH15-01 and BH15-02, respectively.

2.2 Foundation Design Recommendations

Based on existing design information, it is understood that the proposed labyrinth weir and box culvert will have a top of slab elevation of 69.1 m. The thicknesses of the footings or slab were not known at the time of preparation of this technical memorandum. The existing ground surface elevation at the location of the labyrinth weir and box culvert/bridge ranges from approximately El. +74 m to El. +75 m elevation.

Since the approximate depth from existing ground surface to the top of slab elevation ranges from about 5 m to 6 m across the site, it is anticipated that sand, with varying amounts of gravel and silt, and/or soft, silty clay will be encountered at and extend up to 1.5 m below the anticipated elevation of the underside of the footings and slab of the labyrinth weir.

Similar subsurface conditions are anticipated at the underside of at least a portion of the box culvert structure. However, conglomerate bedrock will likely be encountered close to the transition zone of the culvert structure and the channel and may underlie portions of the box culvert/bridge structure at or close to foundation grade. The extent of conglomerate at the site is not known since it was only encountered within the footprint of the weir and culvert at borehole BH15-03, at an approximate elevation of El. +68.2 m. At test-pit location TP15-04 located within the channel, inferred bedrock was encountered at an approximate elevation of El. +69.7 m.

The soft fine-grained soils are compressible and, as such, are not a suitable subgrade layer. Similarly, the sand material encountered at the proposed foundation and slab elevation of the weir within BH15-01 is saturated, with variable silt content, and is expected to be highly susceptible to disturbance and difficult to prepare suitably.

Till-like soils were encountered underling the sand and clayey silt at an approximate elevation of El. +67.7 m, within borehole BH15-01, and approximately El. +67.6 m, within BH15-02. Given the limited depth to till-like soils from the proposed top of slab elevation, we recommend and have assumed that the perimeter footings of the labyrinth weir and culvert or bridge will be founded on till-like soils and/or conglomerate bedrock, with a minimum embedment depth of 0.3 m.

For the structural slab located within the weir and culvert, we have assumed that this will be founded on well compacted structural fill that has been placed on top of the prepared till-like subgrade and/or bedrock subgrade to the underside of the slab.

The very dense, till like soils and the fresh conglomerate encountered are considered suitable for support of the proposed structure. The recommended bearing resistance of the intact sedimentary bedrock exceeds that of the till-like soil. However, for design purposes, we recommend that a single bearing capacity is adopted for the labyrinth weir and box culvert structures.

The recommended allowable bearing resistance under static loading for the spillway structure and the recommended friction coefficients for the interface contact between the structural slab and the foundation soils are provided in Table 2, below.

Parameter	Value
Allowable bearing pressure (Factor of Safety = 3)	617 kPa
Ultimate Limit State (ULS) Factored Bearing Resistance – Resistance factor Φ = 0.5 (Canadian Foundation Engineering Manual 2006)	925 kPa
Base Friction Coefficient (tan δ) – For concrete poured over crushed gravel base	0.55
Base Friction Coefficient (tan $\delta)$ – For concrete poured over non-plastic silt or stiff clay/silty base	0.35
Base Friction Coefficient (tan δ) – For concrete poured over sedimentary bedrock base	0.70

Table 2: Recommended Foundation Design Parameters for Footings

The modulus of subgrade reaction of the subgrade material may be used to estimate its elastic deformation characteristics. It is important to note, however, that the modulus of subgrade reaction is not fundamental soil property. In addition to the deformation characteristics of the subgrade, it is dependent on the geometry and stiffness of the structural member in contact with the subgrade material. We therefore recommend the following relationship be used in the determination of the modulus of subgrade reaction for structural analysis of a slab.

$$k = \sqrt[3]{\frac{E_s}{E_c}} \frac{E_s}{(1 - \nu_s^2)h}$$

Where,

k = Modulus of subgrade reaction (kPa/m);

 E_s = Young's modulus of soil subgrade (kPa);

E_c = Young's modulus of structural element slab (kPa);

 v_s = Poisson's ratio of soil subgrade, and

h = thickness of slab (m).

The following range of soil parameters are recommended for substitution in the above equation:

 $E_s = 15,000$ to 20,000 kPa, and

 $v_s = 0.3$ to 0.35.

2.3 Post – Construction Settlement

The undisturbed very dense till-like soils and conglomerate bedrock, expected to be encountered at foundation level of the labyrinth weir and box culvert structure, are not considered likely to compress significantly under the foundation loads imposed by these structures, provided subgrade preparation is carried out as recommended in Section 4.1. Consequently, significant long-term post construction settlements are not expected. Nominal construction total and differential settlement, less than 25 mm, is anticipated for foundations supported on intact, undisturbed till-like material and weathered rock.

3.0 LATERAL EARTH PRESSURE

The recommended geotechnical engineering parameters for the design of the proposed auxiliary spillway walls are presented in Table 3 and 4, below.

The parameters tabulated below are based on the following assumptions:

- The perimeter footings are founded on very dense till-like soils or sedimentary bedrock;
- Suitable subgrade preparation is carried out;

- The backfill around the spillway consists of free-draining structural fill having a fines content of less than 5 percent;
- The slope of the backfill surface around all spillway walls is horizontal;
- The back face of the wall is vertical; and
- No surcharge loads are applied on the backfill adjacent to the spillway that would induce lateral stress on the walls.

3.1 Static Loading Conditions

For rigid walls restrained from lateral movement (non-yielding), the static earth pressure forces acting on the wall may be calculated using the formulation given on Figure 1 and the parameters in Table 3 and 4.

Retaining wall structures which are free to rotate about their base enough to permit displacements at the top of the wall of at least 0.1 percent of the total height of the wall (stiff walls) may be designed using 75 percent of the rigid wall value.

For walls that are flexible and free to rotate sufficiently to develop active earth pressure conditions (at least 0.5 percent), the lateral earth pressure will correspond to Ka under static conditions and Kae under seismic conditions.

Parameter	Value
Unit weight of backfill, γ _f (kN/m ³)	20
Buoyant unit weight of backfill, γ_{fb} (kN/m ³)	10.2
Friction angle of backfill, Φ' (degrees)	34°
Normal Operating Water Level Elevation	+71.6 m
Coefficient of earth pressure at rest (K_0)	0.44
Coefficient of active earth pressure (K_a) – Coulomb theory	0.25
Coefficient of passive earth pressure (K_p) (Factor of Safety = 2 on peak) – Coulomb theory	4.3
Friction angle between wall and backfill – Coulomb theory (degrees)	22°

Table 3: Recommended Geotechnical Parameters for Design of Spillway - Static Condition

Retaining walls supporting surcharges, such as vehicle loads, building appurtenances, and/or sloping backfill should be designed to resist the additional lateral loads imposed by these surcharges.

It is recommended that all below grade walls have full effective drainage. The backfill material should have direct hydraulic connection to a perimeter tile drainage system at the base of the walls. The drain should consist of a perforated pipe surrounded by a suitable geotextile. If adequate drainage is not provided, the walls should be designed to withstand full hydrostatic pressures in addition to the lateral earth pressures. Refer to the attached figures for details of calculating the various loads on the below-grade walls.

3.2 Seismic Loading Conditions

For seismic conditions, the dynamic pressure under earthquake loading must be accounted for. If the walls of the spillway are rigid and non-yielding, it is recommended that the lateral earth pressure coefficient under seismic loading conditions be calculated using the procedure indicated on Figure 1 and a peak horizontal ground surface acceleration, A, of 0.268g for SLS design, and 0.499g for ULS design, as outlined in Table 1 and Table 4. The total lateral earth pressure under seismic conditions is computed by adding the dynamic component to the static earth pressure as indicated in the figure.

For deformable walls, where the wall is free to rotate between 0.1 to 0.2 percent of the height of the wall, H, the maximum seismic pressure may be calculated as 75 percent of the rigid wall value. The pressure should be redistributed in equivalent rectangular form over the embedded height of the wall.

For a sufficiently flexible wall, where movement at the top of the wall of at least 0.5 percent of H can be tolerated, the lateral earth pressure under seismic loading conditions can be determined using the Mononobe-Okabe method. For this scenario, it is recommended that the lateral earth pressure under seismic loading condition be calculated using the procedure indicated on Figure 2 and a dynamic earth pressure coefficient Kae of 0.34 for SLS design, or 0.45 for ULS design. The total lateral earth pressure under seismic loading conditions is computed by adding the dynamic component to the static earth pressure as indicated on Figure 2.

Table 4 below presents the lateral earth pressure coefficients for both static and seismic conditions for the different wall types outlined above.

Type of Wall	Tolerated Movement at Top of Wall	Static Conditions		Static Conditions		Seismic Earth Pressure
		K ₀	K _a			
Rigid Wall – Non Yielding	0% of H	0.44	N/A	Refer to Figure 1. A = 0.268 g (for SLS Design) A = 0.499 g (for ULS Design)		
Stiff Wall	0.1% to 0.2 % of H	0.44	N/A	0.75 times non-yielding value. Redistribute as rectangular load.		
Flexible Wall	>0.5% of H	N/A	0.25	Use Mononobe-Okabe method. $K_{ae} = 0.34$ (for SLS Design) $K_{ae} = 0.45$ (for ULS Design)		

Table 4: Lateral Earth Pressure Coefficients

4.0 CONSTRUCTION CONSIDERATIONS

4.1 Subgrade Preparation

Within the footprint of the proposed labyrinth weir and box culvert, it is anticipated that saturated or wet sand with varying amounts of gravel and silt, and/or soft, silty clay will be encountered at the anticipated elevation of the underside of the structural slab. As discussed in Section 2.0 above, we recommend that these sand and clayey deposits are overexcavated and that the till-like material and/or conglomerate bedrock is exposed across the

footprint of the structures. We recommend that the perimeter footings of the labyrinth weir and culvert will be founded on till-like soils or conglomerate bedrock, with a minimum embedment depth of 0.3 m. For the structural slab located within the perimeter footings, we recommend that this be founded on structural fill that has been placed on top of the prepared till-like subgrade or bedrock subgrade to the underside of the slab.

The exposed till-like subgrade should be cleaned and subexcavated, as required, to remove all loosened, saturated or otherwise unsuitable material and inspected by an experienced geotechnical engineer, prior to placement compacted Structural Fill, described below. Exposed, protruding cobbles or boulders encountered in the subgrade may require removal as they could result in locally hard support conditions for footings. Alternatively, structural design of the footings should be adjusted to accommodate the differential support conditions.

Although strong in their unweathered conditions, till-like soils are susceptible to loss of strength and erosion when exposed to weathering or seepage, particularly at localized granular and water-bearing zones. Care and attention should be exercised in not allowing the subgrade to be exposed to sustained wet weather or heavy traffic. Water should not be allowed to pond on the prepared subgrade surface. The approved subgrade should be covered with crushed gravel base course material, as described below, to avoid disturbance. Alternatively, it is recommended that consideration be given to initial placement of a minimum 50 mm thickness of lean concrete immediately following completion of subgrade preparation to minimize potential disturbance or softening prior to or during placement of the Structural fill or pouring of foundations.

The conglomerate, although very dense and strong in place, is also moderately to highly susceptible to softening and disturbance when exposed following excavation, in particular in the presence of seepage or ponding of surface runoff. It is recommended that a 50 mm working mat of lean mix concrete should be placed over the entire footing and slab excavation area immediately after cleaning and inspection.

4.2 Backfilling and Compaction Requirements

The prepared subgrade for the slabs of the labyrinth and box culvert should be brought up to underside of the slabs using clean 19 mm crushed gravel as a suitable base course layer. Structural fill material should be in conformance with the latest Master Municipal Construction Documents (MMCD).

Backfill around the outside of the labyrinth and culvert structure should consist of Structural Fill, defined as well-graded, free-draining sand, or sand and gravel, containing less than 5 percent material passing the USS No. 200 sieve size.

Structural fill and backfill should be placed in lifts not exceeding 300 mm loose thickness and compacted to 95 percent of the modified Proctor maximum dry density (MPMDD) for the material.

To avoid overstressing and damage to walls, heavy compaction equipment should be avoided adjacent to below grade walls. Only light hand operated compaction equipment should be utilized in these areas.

Clear crushed gravels are not recommended for use as structural fill or backfill due to the potential for infiltration of fines from surrounding soils into these materials, thereby resulting in loss of ground and support.

5.0 CLOSURE

We trust that this is sufficient for your immediate requirements. Should you have any queries or comments, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Thomas Madden

Thomas Madden, E.I.T. Geotechnical Engineer

TBM/RCB/nnv

Ricnard C. Butler, P. Eng., FEC

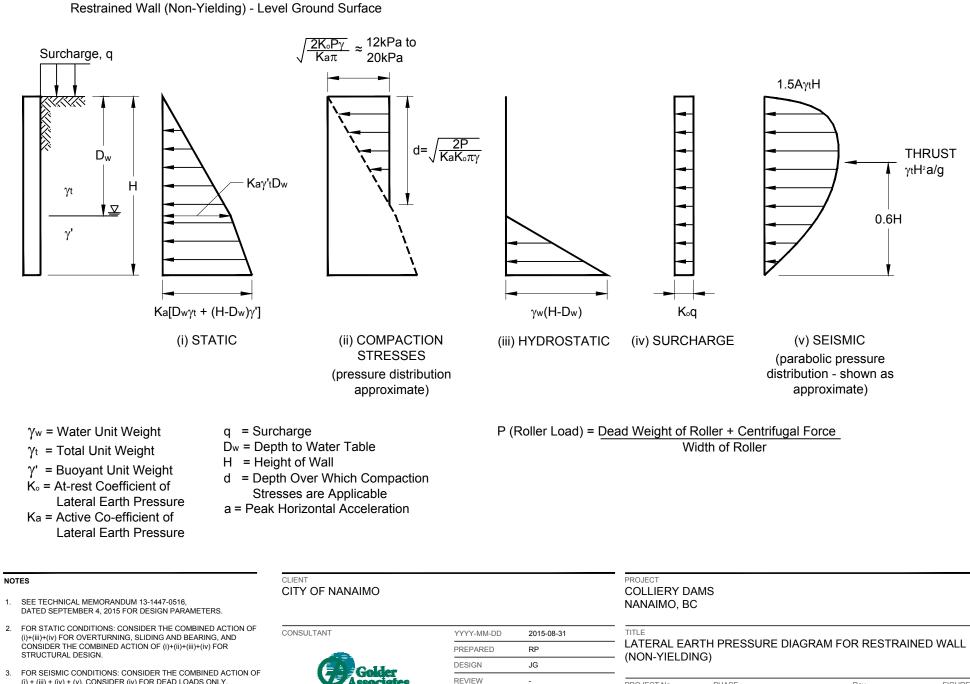

 Attachments:
 Figure 1: Lateral Earth Pressure Diagram for Rigid Wall (Non-Yielding)

 Figure 2: Lateral Earth Pressure Diagram for Flexible Wall (Yielding)

 Attachment 1: 2010 National Building Code Seismic Hazard Calculation

o:\final\2013\1447\13-1447-0516\1314470516-031-tm-rev0\1314470516-031-tm-rev0 geotech design 04sep_15.docx

APPROVED

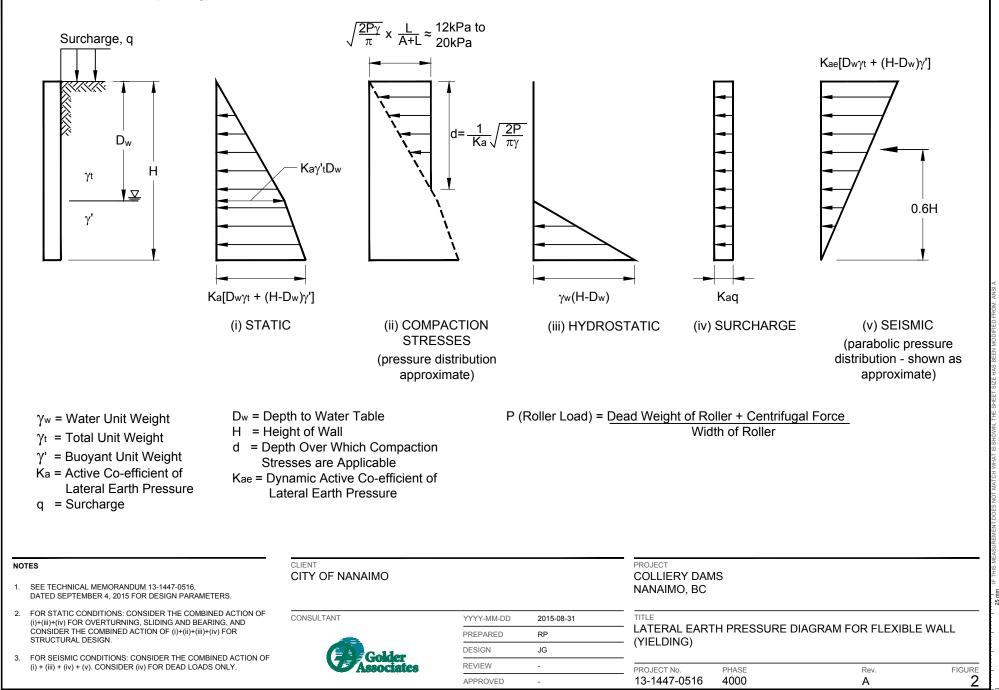
-

PROJECT No.

13-1447-0516

PHASE

4000


Rev.

А

FIGURE

(i) + (iii) + (iv) + (v). CONSIDER (iv) FOR DEAD LOADS ONLY.

Flexible Wall (Yielding) - Level Ground Surface

ATTACHMENT 1 -2010 National Building Code Seismic Hazard Calculation

2010 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

Requested by: , Golder Associates Ltd. Site Coordinates: 49.1492 North 123.9616 West User File Reference: Colliery Dam

National Building Code ground motions:2% probability of exceedance in 50 years (0.000404 per annum)Sa(0.2)Sa(0.5)Sa(0.5)Sa(1.0)Sa(2.0)PGA (g)1.0130.6920.3510.1780.499

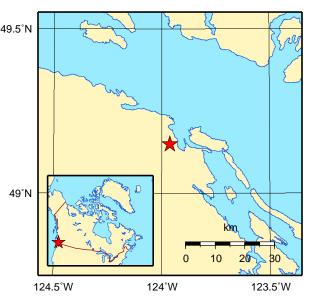
Notes. Spectral and peak hazard values are determined for firm ground (NBCC 2010 soil class C - average shear wave velocity 360-750 m/s). Median (50th percentile) values are given in units of g. 5% damped spectral acceleration (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are tabulated. Only 2 significant figures are to be used. *These values have been interpolated from a 10 km spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the calculated values.* Warning: You are in a region which considers the hazard from a deterministic Cascadia subduction event for the National Building Code. Values determined for high probabilities (0.01 per annum) in this region do not consider the hazard from this type of earthquake.

Ground motions for other probabilities:

Probability of exceedance per annum	0.010	0.0021	0.001
Probability of exceedance in 50 years	40%	10%	5%
Sa(0.2)	0.245	0.532	0.726
Sa(0.5)	0.163	0.357	0.489
Sa(1.0)	0.082	0.181	0.248
Sa(2.0)	0.040	0.089	0.123
PGA	0.125	0.268	0.360

References

National Building Code of Canada 2010 NRCC

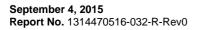

no. 53301; sections 4.1.8, 9.20.1.2, 9.23.10.2, 9.31.6.2, and 6.2.1.3 **Appendix C:** Climatic Information for Building Design in Canada - table in Appendix C starting on page C-11 of Division B, volume 2

User's Guide - NBC 2010, Structural Commentaries NRCC no. 53543 (in preparation) Commentary J: Design for Seismic Effects

Geological Survey of Canada Open File xxxx Fourth generation seismic hazard maps of Canada: Maps and grid values to be used with the 2010 National Building Code of Canada (in preparation)

See the websites *www.EarthquakesCanada.ca* and *www.nationalcodes.ca* for more information

Aussi disponible en français



August 24, 2015

APPENDIX C

Structural Design Development Report

Page

City of Nanaimo – Lower Colliery Dam Remediation Structural Design Development September 4, 2015

Table of Contents

1	SUN	/MARY	1
2	STR		1
	2.1	Proposed Construction for the Auxiliary Spillway	1
	2.2	Proposed Design Progression - Structural Engineering:	1
	2.3	Structural Design Considerations:	2

STRUCTURAL DESIGN DEVELOPMENT

1 SUMMARY

The lower colliery dam has been reviewed with respect to several remediation alternatives as per the June 30, 2015 Structural Design Development Report. It is understood that of the two options proposed, the design of the auxiliary spillway has been selected.

This Design Development Report is to be considered preliminary for the purpose of conceptual design. The final size and location of footings, walls and slabs are subject to change depending on final layout and further structural analysis completed.

2 STRUCTURAL COMMENTARY

2.1 <u>Proposed Construction for the Auxiliary Spillway</u>

The proposed auxiliary spillway structure at the Nanaimo Colliery Lower Dam site is progressing through conceptual design. The auxiliary spillway structure is proposed to be located to the south of the existing lower dam. While the design concept may be modified due to site constraints as well as user group input, the proposed design rationale is as described below.

The spillway is proposed to consist of:

- Reinforced concrete apron slab and wing walls to train the water into the spillway
- Reinforced concrete labyrinth weir with two sluice gate valves for seasonal reservoir water level adjustment and/or to adjust water flow levels downstream.
- 5-8m wide Precast/Pre-stressed concrete box girder bridge structure that will either clear span over the spillway opening or be supported by a center pier. The purpose of the bridge structure will be for pedestrian access across this structure and maintain a similar trail alignment.
 - It has been proposed that the bridge be supplied with an earthen topping to keep the natural appearance of the park and as such will be accounted for in the bridge loading criteria.
- Reinforced concrete walls/bridge abutment and spillway slab extending from the front of the labyrinth weir to the approximate extents of the downstream edge of the bridge structure.
- 2.2 Proposed Design Progression Structural Engineering:

The structural engineering design progression is anticipated to be as follows:

- ⁷Complete preliminary foundation design for the spillway/bridge structure.
- Elevations and final design of foundations will be subject to geotechnical reports / site excavation findings.

- Progress with weir labyrinth design.
 - Labyrinth design is subject to foundation design but can progress based on preliminary geotechnical data.
- Progress with bridge design.
 - Bridge loading design must be completed for foundation design, final design drawings and detailing for the bridge.
- 2.3 <u>Structural Design Considerations:</u>

Based on the geotechnical and hydro-technical data produced in draft level reports from Golder Associates there are no significant geological or environmental risks foreseen that would prevent the completion of the proposed design.

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Asia

+ 27 11 254 4800

+ 86 21 6258 5522

+ 61 3 8862 3500 + 44 1628 851851

North America + 1 800 275 3281

South America + 56 2 2616 2000

Golder Associates Ltd. Suite 200 - 2920 Virtual Way Vancouver, BC, V5M 0C4 Canada T: +1 (604) 296 4200

