April 28, 2014

FACTUAL GEOTECHNICAL REPORT FOR

Colliery Dams Remediation Project, Nanaimo, BC

Submitted to: Colliery Dams Technical Committee Nanaimo City Hall 455 Wallace Street Nanaimo, BC V9R 5J6

REPORT

Report Number:

1314470516-004-R-Rev0-

Distribution:

7000

4 copies - Colliery Dams Technical Committee 2 copies - Golder Associates Ltd.

Table of Contents

1.0	INTRO	DUCTION	.1
2.0	SITE L	OCATION AND DESCRIPTION	.1
3.0	HISTO	RIC GEOTECHNICAL AND STRUCTURAL INFORMATION	.2
	3.1	Geotechnical Investigation of Lower and Middle Dam in 1978	.2
	3.2	EBA Testing Pitting Investigation of Lower and Middle Dam in 2009	.2
	3.3	Willis Cunliffe and Tait 1980 As-Built Report	.2
4.0	FIELD	WORK SUMMARY	.2
5.0	GEOPH	IYSICAL INVESTIGATIONS	.3
6.0	GEOTE	CHNICAL INVESTIGATION OF LOWER DAM	.3
	6.1	Sonic Drilling	.3
	6.2	Test Pitting	.4
	6.3	Laboratory Testing	.5
7.0	ENVIR	ONMENTAL INVESTIGATION OF LOWER DAM	.5
8.0	STRUC	TURAL INVESTIGATION OF LOWER DAM	.5
	8.1	Diamond Drilling	.5
	8.2	Laboratory Testing	.6
	8.2.1	Concrete Testing	.6
	8.2.2	Rock Testing	.7
9.0	HYDRO	GEOLOGY INVESTIGATION OF LOWER DAM	.7
	9.1	Piezometer Installation	.7
	9.1.1	Water Level Monitoring	.7
	9.2	In-situ Hydraulic Conductivity Testing	. 8
10.0	CLOSU	IRE	.8

TABLES

Table 1: Summary of Site Investigations	2
Table 2: Preliminary test program for concrete cores	6
Table 3: Water Level Monitoring in Lower Dam Downstream Fills	7
-	

FIGURES

- Figure 1: Key Plan
- Figure 2: Site Location Plan
 Figure 3: Location Plan Middle Dam
 Figure 4: Cross-Section A-A' Middle Dam
 Figure 5: Cross Section B-B' Middle Dam
 Figure 6: Location Plan Lower Dam
 Figure 7: Cross-Section C-C' Lower Dam
 Figure 8: Cross-Section D-D; Lower Dam
 Figure 9: Cross Section E-E' Lower Dam

APPENDICES

APPENDIX A

Appendix A-Historic Investigations

Annex A Golder 1978 Investigation Lower and Middle Dam

Annex B EBA 2009 Testing Pit Records

Annex C Willis Cunliffe and Tait 1980 As-Built Report

APPENDIX B

Appendix B-Geophysical Investigations

Annex A Surface Investigation of Lower and Middle Dam

Annex B Summary of Corehole Geophysics of Lower Dam

Annex C Downhole Seismic Velocity of Lower Dam

APPENDIX C

Appendix C Geotechnical Investigation of Lower Dam

Annex A Record of Testholes

Annex B Sonic Drilling Core Photos

Annex C Laboratory Testing Results

APPENDIX D Appendix D Environmental Investigation of Lower Dam

APPENDIX E

Appendix E Concrete Investigation of Lower Dam

Annex A Record of Coreholes

Annex B Diamond Drilling Core Photos

Annex C Laboratory Testing Results

Annex D Risk Management Plan

APPENDIX F

Appendix F Hydrogeological Investigation of Lower Dam

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by the City of Nanaimo to be part of the Colliery Dam Technical Committee. The Colliery Dam Technical Committee's mandate is to identify an environmentally minimally invasive, cost- and time-effective remediation solution for the Colliery Dam system that meets safety standards, satisfies Dam Safety Section requirements and the respective objectives of the City of Nanaimo, Snuneymuxw First Nation, and the Colliery Dam Park Preservation Society. The following factual report provides a summary of the field work carried out to date to collect additional data to aid in the development of option(s) for remediating the existing dams.

Geophysical, geotechnical, environmental, structural and hydrogeological data was collected in the field January 15 to April 3, 2014. This report also contains relevant geotechnical information collected by EBA Engineering Consults Ltd. (EBA) in 2009 and Golder in 1978, as well as relevant information from the 1980 as-built reports prepared by Willis Cunliffe and Tait Ltd. (Willis Cunliffe and Tait) as outlined in Sections 3 of this report. This report is a data report and as such contains descriptions of the investigation methods, testing results, and factual data collected. Interpretations of the stratigraphy between test locations and the engineering properties of the various strata are not addressed in this report. The impacts of contamination are also not addressed in this report and will be outlined in a subsequent design report. All elevations are relative to Geodetic Datum, unless otherwise indicated.

This report should be read in conjunction with the "*Information and Limitations of This Report*" which is included following the text of this report. The reader's attention is specifically drawn to this information, as it is essential that it is followed for the proper use and interpretation of this report.

2.0 SITE LOCATION AND DESCRIPTION

The Middle and Lower Chase Dams are situated to the southeast of the City of Nanaimo on the Chase River and are furthest dams downstream of a series of four dams on the Chase River system, see Figure 1. The dams are currently located within a municipal park (Colliery Dam Park). The dams can be accessed by way of Nanaimo Lakes Road to the north, see Figure 2.

It is our understanding that the dams were constructed in the early 20th century to provide coal washing water during the coal mining era of Nanaimo. Middle and Lower Chase Dams are 13 and 23.5 m high and 50 and 77 m long, respectively. The dams appear to have been engineered structures when constructed nearly a hundred years ago, but no records of their design and construction are available.

It is our understanding that both dams generally comprised of a central concrete core wall buttressed by variable rock fill slopes constructed upstream and downstream of the concrete wall. The upstream slopes are underwater and survey attempts to determine the condition and configuration of the fill on either dam have been unsuccessful due to heavy siltation. It is our understanding based on historical maps that a railway track was constructed over the Lower Dam in 1918. Cinders and slag fill appeared to have been added to the downstream shell to permit crossing at orientation not parallel to concrete wall.

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by the City of Nanaimo to be part of the Colliery Dam Technical Committee. The Colliery Dam Technical Committee's mandate is to identify an environmentally minimally invasive, cost- and time-effective remediation solution for the Colliery Dam system that meets safety standards, satisfies dam safety section requirements and the respective objectives of the City of Nanaimo, Snuneymuxw First Nation, and the Colliery Dam Park Preservation Society. The following factual report provides a summary of the field work carried out to date to collect additional data to aid in the development of option(s) for remediating the existing dams.

Geophysical, geotechnical, environmental, structural and hydrogeological data was collected in the field January 15 to April 3, 2014. This report also contains relevant geotechnical information collected by EBA Engineering Consults Ltd. (EBA) in 2009 and Golder in 1978, as well as relevant information from the 1980 as-built reports prepared by Willis Cunliffe and Tait Ltd. (Willis Cunliffe and Tait) as outlined in Sections 3 of this report. This report is a data report and as such contains descriptions of the investigation methods, testing results, and factual data collected. Interpretations of the stratigraphy between test locations and the engineering properties of the various strata are not addressed in this report. The impacts of contamination are also not addressed in this report and will be outlined in a subsequent design report. All elevations are relative to Geodetic Datum, unless otherwise indicated.

This report should be read in conjunction with the "*Information and Limitations of This Report*" which is included following the text of this report. The reader's attention is specifically drawn to this information, as it is essential that it is followed for the proper use and interpretation of this report.

2.0 SITE LOCATION AND DESCRIPTION

The Middle and Lower Chase Dams are situated to the southeast of the City of Nanaimo on the Chase River and are furthest dams downstream of a series of four dams on the Chase River system, see Figure 1. The dams are currently located within a municipal park (Colliery Dam Park). The dams can be accessed by way of Nanaimo Lakes Road to the north, see Figure 2.

It is our understanding that the dams were constructed in the early 20th century to provide coal washing water during the coal mining era of Nanaimo. Middle and Lower Chase Dams are 13 and 23.5 m high and 50 and 77 m long, respectively. The dams appear to have been engineered structures when constructed nearly a hundred years ago, but no records of their design and construction are available.

It is our understanding that both dams generally comprised of a central concrete core wall buttressed by variable rock fill slopes constructed upstream and downstream of the concrete wall. The upstream slopes are underwater and survey attempts to determine the condition and configuration of the fill on either dam have been unsuccessful due to heavy siltation. It is our understanding based on historical maps that a railway track was constructed over the Lower Dam in 1918. Cinders and slag fill appeared to have been added to the downstream shell to permit crossing at orientation not parallel to concrete wall.

3.0 HISTORIC GEOTECHNICAL AND STRUCTURAL INFORMATION

A full review of all the historic information available on the two dams will be provided in a subsequent design report. Historic geotechnical and structural information collected on the two dams is presented herein.

3.1 Geotechnical Investigation of Lower and Middle Dam in 1978

In 1978 Golder was retained by Willis Cunliffe and Tate to carry out geotechnical investigations at each of the dams as part of a geotechnical investigation of five dams within the municipal boundaries of the City of Nanaimo (Golder 1978). The geotechnical investigation comprised of putting down three boreholes and four test pits at the Middle Dam and four boreholes and four test pits at the Lower Dam. Difficult drilling through coarse earth fill did not allow for sampling or density measurements in all boreholes. The borehole and test pit records for these holes can be found in Appendix A, Annex A. The locations of the boreholes and test pits are shown on Figure 3 and 6.

3.2 EBA Testing Pitting Investigation of Lower and Middle Dam in 2009

EBA were retained by the City of Nanaimo to conduct a seismic hazard assessment for the Middle and Lower Dams (EBA 2010). As part of this assessment EBA put down three test pits on the downstream side of the Middle Dam and five test pits on the downstream side of the Lower Dam. The test pit records for these holes can be found in Appendix A, Annex B. The locations of the test pits are shown on Figure 3 and 6.

3.3 Willis Cunliffe and Tait 1980 As-Built Report

Willis Cunliffe and Tate were retained by the City of Nanaimo to rehabilitate the Middle and Lower Dams in August of 1980. As-built reports prepared by Willis Cunliffe and Tate outline the extent of the rehabilitation on both dams (Willis Cunliffe and Tate, 1980). The As-built report can be found in Appendix A, Annex C. Relevant geotechnical and structural rehabilitation carried out in 1980 has been shown on Figure 4, 5 and 7.

4.0 FIELD WORK SUMMARY

The field work that was carried out by Golder on the dams between January 15 and April 3, 2014 is outlined below in Table 1.

Investigation	Investigation Method	Location	Date
	Surface Ground Penetrating Radar (GPR)	Middle and Lower Dam	January 15 to 17, 2014
Geophysical	Multichannel Analysis of Surface Waves (MSAW) combined with Seismic Refraction	Lower Dam	January 15 to 17, 2014
	Optical and acoustic televiewers	Lower Dam	March 25 and 26, 2014
	Downhole GPR	Lower Dam	March 25 and 26, 2014

Table 1: Summary of Site Investigations

Investigation	Investigation Method	Location	Date
	Downhole Seismic	Lower Dam	March 21, 2014
Geotechnical	Sonic Drilling	Lower Dam	February 11 to 14, 2014
Geolechnicar	Test Pitting	Lower Dam	April 1 to 2, 2014
Environmental	Sonic Drilling	Lower Dam	February 11 to 14, 2014
Structural	Diamond Drilling	Lower Dam	February 11 to 14, 2014
Hydrogeology	Packer Testing	Lower Dam	March 24 and 25, 2014

5.0 **GEOPHYSICAL INVESTIGATIONS**

Golder carried out a surface geophysical investigation consisting of GPR and MSAW combined with Seismic Refraction on the Middle and Lower Dam January 15 to 17, 2014. Details on the methodology and the results of this investigation can be found in Appendix B, Annex A.

Optical and acoustic televiewers and downhole GPR were put down in coreholes, CH14-02 and CH14-03, located in the Lower Dam concrete wall on March 25 and 26, 2014. Details on the methodology and the results of this corehole geophysics field work can be found in Appendix B, Annex B.

On March 21, 2014, ConeTec investigations Ltd. carried out downhole seismic testing in an installation within one of the sonic holes, SH14-05, details on the sonic drilling and the installation can be found in section 6.0 below. Details on the methodology and the results of the down hole seismic field work can be found in Appendix B, Annex C.

6.0 GEOTECHNICAL INVESTIGATION OF LOWER DAM

Golder carried out a Geotechnical investigation of the Lower Dam in two phases. Phase one consisted of sonic drilling on the dam crest and phase two consisted of test pitting on the downstream face, near the existing spillway and on the dam crest. The geotechnical investigation field work was carried out under the full-time inspection of a member of Golder's geotechnical staff, who identified borehole and test pit locations in the field, logged the subsurface conditions encountered, and collected samples for detailed examination and laboratory testing.

Field identification and classification of soils was carried out in accordance with Golder's soil classification system. A summary of the key aspects of the classification system is presented in Appendix C, Annex A. Surveying of the borehole and test pit locations was not carried out. The locations shown on Figure 6 are based on GPS coordinates taken at the time of the investigation.

6.1 Sonic Drilling

A total of three boreholes (SH14-04 to SH14-06) were advanced using a track-mounted ATV drill rig (Sonic Drilling) supplied and operated by Mud Bay Drilling Co. Ltd., (Mud Bay) of Surrey, BC.

Sonic drilling utilizes a dual-cased single tube core barrel system that employs high frequency mechanical vibration to obtain continuous core samples of the soils. The drilling technique involves vibrating the entire drill string at a frequency rate between 50 and 150 cycles per second, adjusted during operation to suit the ground conditions encountered. The technique employs low speed rotational motion, coupled with downward pressure, to advance the drill string. Borehole advancement is achieved through the process of fracturing, shearing, and displacement depending on the type and consistency of the material encountered.

The soil enters the core barrel providing 102 or 122 mm diameter continuous core samples. Upon completion of each drill run, the outer steel casing was advanced to the end of the run, the core barrel and drill rods were removed, and the continuous sonic core sample was vibrated out of the core barrel directly into a plastic sample bag before being transferred into wooden core boxes.

The sonic cores recovered from each borehole were logged in the field, and taken to Golder's sample storage facility at #300–3811 North Fraser Way, Burnaby, BC where the cores were further examined and photographed. Core photographs can be found in Appendix C, Annex B.

Sonic vibration from the drilling method does cause some disturbance of the soil structure, and can destroy secondary structure features within the soil strata of the continuous core samples that are retrieved. In addition, heating of the core barrel during sonic drilling may reduce the *in-situ* moisture content of the continuous core sample obtained. It should be noted that the sonic drilling method tended to "pulverize boulder and cobble sized particles" while advancing through the soil strata, as well as tending to "pulverize" the upper weathered bedrock.

Various diameters of steel casing were installed in the sonic boreholes to stabilize the borehole during drilling. Typically, 152 mm diameter steel casings were advanced following drilling of each run, and over-ride casings of 178 mm and 203 mm diameter were locally used as required by drilling conditions. Both the core barrel and casing shoes have water jets to allow for cooling and lubrication of the bit, and to flush cuttings out of the hole. Advancement of the drill string was typically carried out without addition of fluid, to prevent additional disturbance and washing of the soils. Advancement of the casing was carried out behind the drill string with the assistance of drill fluids. Water based drilling fluid was used for sonic drilling throughout this investigation.

Following completion of SH14-04 a standpipe piezometer was installed the details of which are outlined below in section 9.1. A 76 mm PVC pipe with the annulus grouted was installed in SH14-05 upon completion to facilitate down hole geophysics testing. SH14-06 was backfilled with a 2 m bentonite seal followed by pea gravel and bentonite chips in alternating lifts in accordance with the BC Groundwater Protection Act (BCGPA), and then capped with 0.3 m of concrete at surface. Soil conditions as well installation details for each of the sonic holes are presented on the Record of Testholes in Appendix C, Annex A.

6.2 Test Pitting

A total of eleven test pits were put down at selected accessible areas within the site and excavated by hand using a shovel and spade to depths between 0.3 and 1.5 m below the existing ground surface. The test pits were terminated at the maximum reach of the equipment or at the maximum depth allowable to maintain hole stability. Test pits were backfilled upon completion. A record of the soil conditions encountered in the test pits can be found in the Record of Testholes, Appendix C, Annex A.

6.3 Laboratory Testing

Laboratory classification tests were performed on selected soil samples obtained from the investigation. The samples were selected from the continuous cores retrieved from the drilling. The classification tests included sieve distribution analyses and a determination of specific gravity. Classification testing was carried out by ALS Laboratories.

Sample preparation was carried out in general conformance with SSIR-51 METHOD 3.2.1; sieve gradation. It is important to recognize that the sampling methods in the field limit the maximum particle size that can be recovered from the boreholes. As such, the laboratory gradation test results shown reflect these maximum sizes, and may not be representative of boulder, cobble, or coarse gravel content.

The classification test results are summarized on the Record of Testholes in Appendix C, Annex A. Detailed results for each of the grain size distribution analysis testing and specific gravity determinations are presented in Appendix C, Annex C.

7.0 ENVIRONMENTAL INVESTIGATION OF LOWER DAM

Suspect slag, ash and cinder fill was encountered in the sonic holes during Phase one of the geotechnical investigation on the Lower Dam. The cinders and slag fill was encountered below surficial fill and extended 3.6 to 5.4 m below ground surface. Samples of the soil containing visible cinders and slag fill were collected from varying depth intervals for environmental evaluation and testing. The results of an initial geo-environmental assessment on the suspected cinders and slag fill are outlined in Appendix D.

8.0 STRUCTURAL INVESTIGATION OF LOWER DAM

Golder carried out a structural investigation of the Lower Dam concrete wall on February 11 to 14, 2014. The investigation consisted of diamond drilling into the concrete wall. The structural investigation field work was carried out under the full-time inspection of a member of Golder's geotechnical staff, who identified corehole locations in the field and carried out in-situ measurements. A structural engineer, a representative from Herold Engineering, was onsite in order to assess the condition of the core and rebar.

Surveying of the corehole locations was not carried out. The locations shown on Figure 6 are based on GPS coordinates taken at the time of the investigation.

8.1 Diamond Drilling

Concrete and bedrock coring was carried out on the Lower Dam using a diamond drilling rig supplied and operated by Cabo Drilling Corp. (Cabo) of Surrey, BC. A PQ sampler was used with an external of diameter of 122.6 mm and an internal diameter of 85 mm. PQ coring was carried out at two locations and the holes were put down to bedrock. Water is injected into the drill pipe to wash out the rock cuttings produced by the bit and also to reduce the heat produced due to friction which causes less wear and tear of the bits.

The full width of the concrete wall was exposed 0.6 to 0.7 m below ground surface at each of the core hole locations. The holes were then collared in the center of the wall and surveyed during drilling. Provisions were in place through our Risk Management Plan (RMP) for grouting the coreholes in the event that the drilling deviated or if poor quality concrete was encountered, to such a degree that the stability of the borehole could not be maintained. The holes did not deviate more than 2% during drilling and poor quality concrete was not encountered. In addition corehole instability was not encountered or observed during or after drilling. A copy of the RMP can be found in Appendix E, Annex D; the RMP was never implemented during drilling.

The concrete and bedrock core was collected in core boxes and transferred to the Golder's sample storage facility where the cores were further examined and photographed. Core photographs can be found in Appendix E, Annex B.

The core holes were capped upon completion and left open to facilitate in-situ testing. The Record of Corehole Sheets is presented in Appendix E, Annex A.

8.2 Laboratory Testing

Samples of the concrete and rock core were taken from the core boxes for further testing, see the record of corehole sheets in Appendix E, Annex A for sample locations and depths.

8.2.1 Concrete Testing

A total of five Unconfined Compressive Strength (UCS), two direct tensile strengths, two modulus of elasticity and two poisons ratios were carried out on samples of the concrete taken from the core. These tests were carried out to characterize the Lower Dam concrete wall properties. Table 2 below summarizes the preliminary laboratory tests carried out.

Concrete Properties	Test Method	CH14-02	CH14-03
Unconfined Compressive Strength	CSA A23.2-9C/14C	3 specimens	2 specimens
Direct Tensile Strength of Concrete Pour Joint	CSA A23.2-6B Procedure B	1 specimen	1 specimen
Modulus of Elasticity and Poisson's Ratio	ASTM C 469	1 specimen	1 specimen

Table 2: Preliminary test program for concrete cores

It is standard practice for the testing of concrete cores that diameter of concrete cores is at least three times the size of the maximum coarse aggregates. This is to reduce size effects from the coarse aggregates. Although the concrete specimens used for our testing were selected to avoid the presence of large coarse aggregates in the concrete, the aggregate sizes in these specimens were still generally larger than one-third of the core diameter. Therefore, test results obtained from these tests should be considered as approximate values only.

As the dam concrete is normally exposed to water from weather and reservoir, all the concrete specimens selected for testing were soaked in water (per CSA A23.2-14C) for 48 hrs. prior to testing.

Detailed results for each of the tests are presented in Appendix E, Annex C.

8.2.2 Rock Testing

One selected rock core sample from borehole CH14-03 was submitted to the Golder laboratory in Burnaby for moisture content and unconfined compressive strength (UCS) testing. Sample preparation was carried out in general conformance with ASTM D4543-04, the moisture content test was carried out in general conformance with ASTM D2216-92 and the unconfined compressive strength (UCS) test was performed in general conformance with ASTM D2938-95. Results of the laboratory rock testing are presented in Appendix E, Annex C.

9.0 HYDROGEOLOGY INVESTIGATION OF LOWER DAM

The ground water condition within the rockfill of the lower dam was investigated with a standpipe piezometer installed in one of the sonic holes. The in-situ hydraulic conductivity of the concrete wall was investigated by in-situ testing in the coreholes put down in the concrete wall.

9.1 **Piezometer Installation**

Following completion of SH14-04 a single standpipe piezometer was installed. The standpipe piezometer consisted 51 mm diameter PVC pipe having machine slotted (#10 slot) tip sections. The length of the slotted sections was 3.1 m. The bored void below the target depth of the single piezometer was filled with bentonite chips to comply with the BCGPA.

A layer of filter sand for bedding was placed just below the base of each piezometer. The standpipe piezometer was then lowered to the target zone, and silica filter sand was placed as a filter pack around the slotted piezometer screen section. The filter sand however, was lost to the surrounding in-situ rockfill therefore pea gravel was used as a filter pack for the remainder of the slotted piezometer screen section. The pea gravel was extended some 0.5 m above the top of the screened section, and an upper bentonite plug was placed to the top of the rockfill to isolate the screen section. Following installation of the bentonite seal, the bored void between the piezometer and hole was backfilled with bentonite chips and pea gravel in alternating lifts in accordance with the BCGPA, and then capped with a flush mounted well cover.

Details of the piezometer installations are shown on the Record of Testholes in Appendix C, Annex A.

9.1.1 Water Level Monitoring

Groundwater level measurements were taken following completion of drilling and during the test pitting investigation. The measurements were collected using a water level meter. Groundwater monitoring results for the piezometer is presented in Table 3. The piezometer was found to be dry on both occasions.

Borehole No.	Elevation at Ground Surface	Elevation at Top of Pipe	Screen Top	Screen Bottom	Groundwater Elevation	Groundwater Elevation
	m geodetic	m geodetic	m geodetic	m geodetic	m geodetic	m geodetic
DATE					February 14, 2014	April 1, 2014
SH14-04	73.500	73.45	64.0	61.0	DRY	DRY

 Table 3: Water Level Monitoring in Lower Dam Downstream Fills

9.2 In-situ Hydraulic Conductivity Testing

In-situ hydraulic conductivity tests were carried out in the form of falling head tests within the coreholes. Details on the in-situ hydraulic conductivity testing and the results associated with the testing are presented in Appendix F.

10.0 CLOSURE

We trust that the factual information provided herein meets your present requirements. Should you have any questions regarding the above, please do not hesitate to contact us.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

ORIGINAL SIGNED

Anne Crowley Geotechnical Group Bruce Downing, P.Eng. Principal

AC/BRD/sn

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

o:\final\2013\1447\13-1447-0516\1314470516-004-r-rev0\1314470516-004-r-rev0-7000 factual report 28apr_14.docx

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client cannot rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder cannot be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Groundwater Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

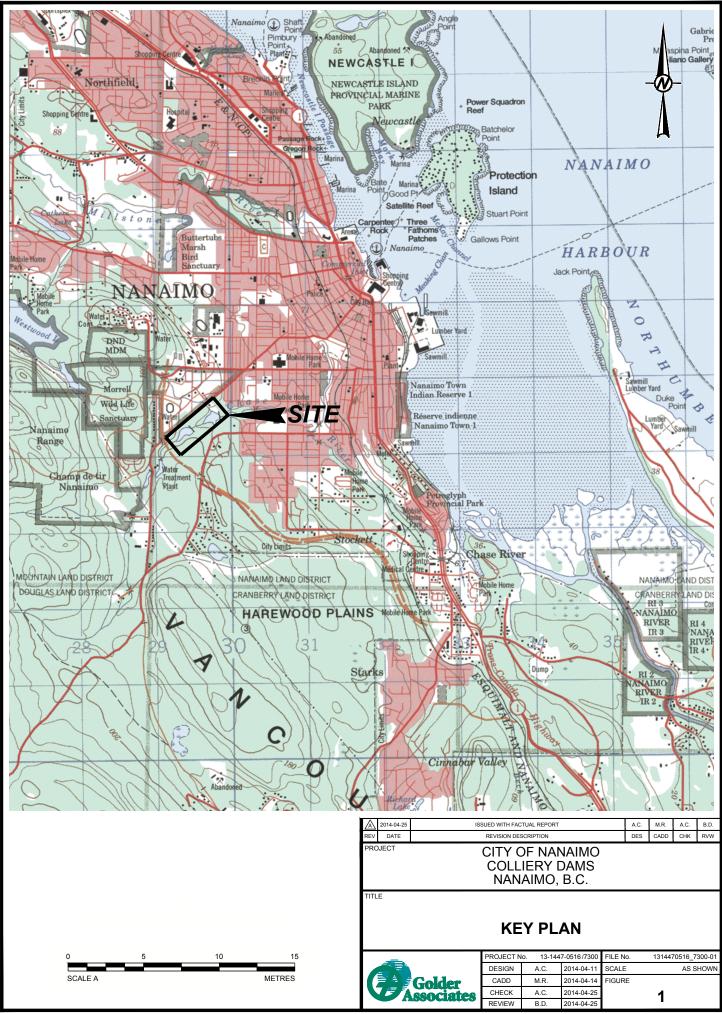
Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, *etc.*) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

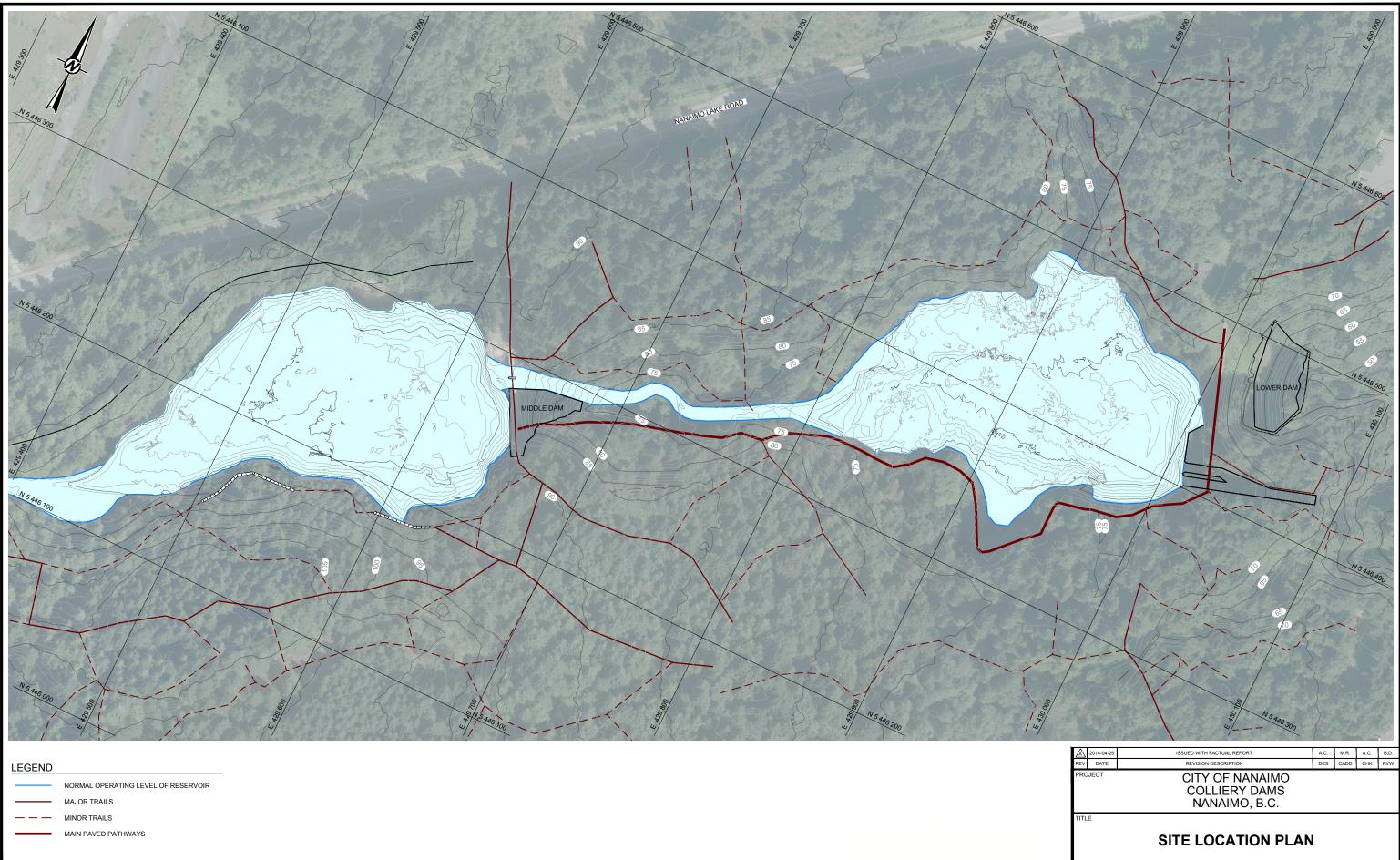
Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

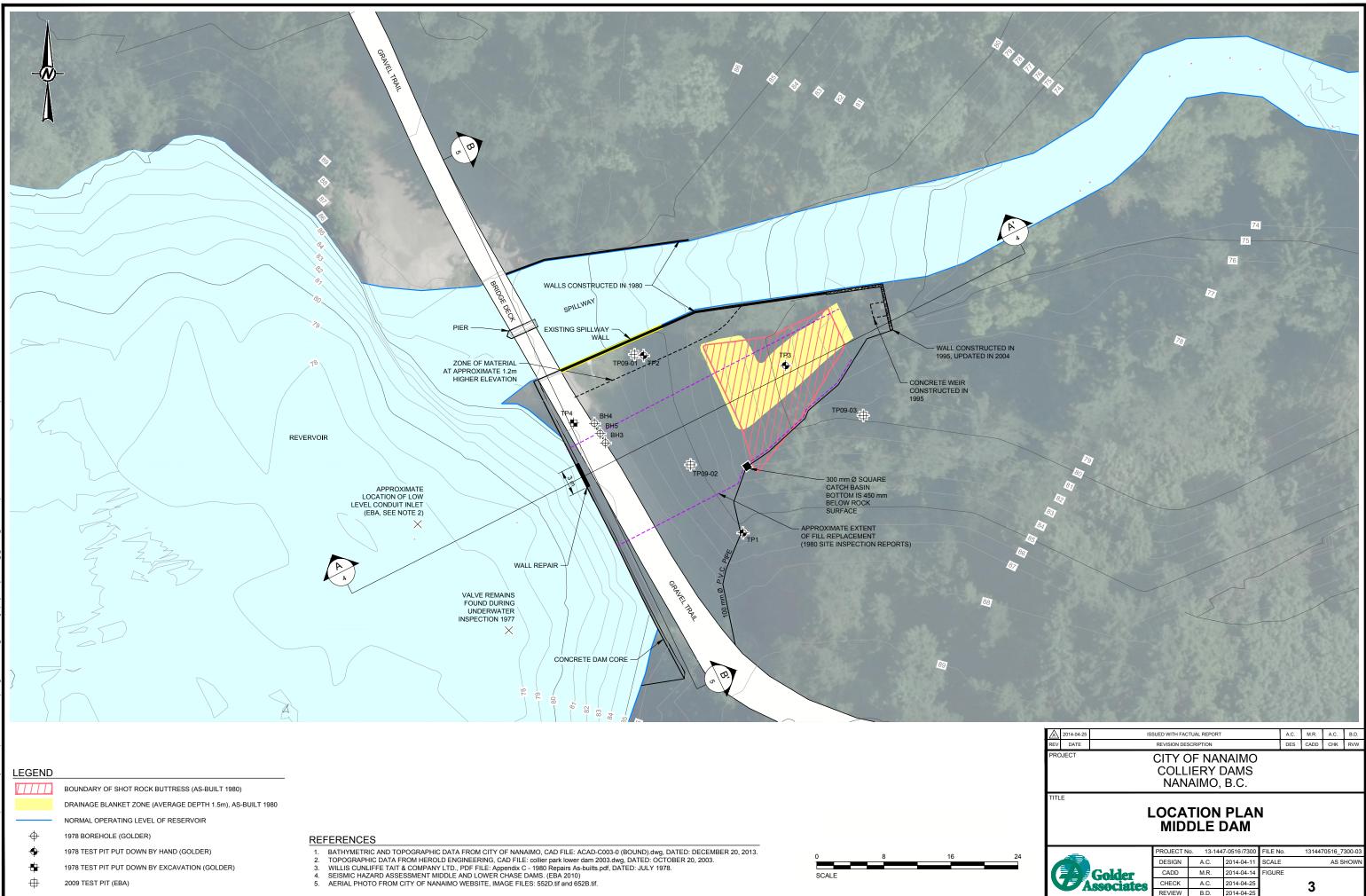
Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.


Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.



REFERENCES

- ASTM D 4543-04, Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances, , American Society for Testing and Materials.
- ASTM D 2938-95, Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens, American Society for Testing and Materials.
- ASTM D 2216-92, Laboratory Determination of Water (Moisture) Content of Soil and Rock, American Society for Testing and Materials.
- ASTM C 469, Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, American Society for Testing and Materials.
- CSA A23.2-9C/14C, Compressive Strength of Cylindrical Concrete Specimens, Canadian Standards Association
- CSA A23.2-6B Procedure B, Method of Test for the Resistance of Fine Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus, Canadian Standards Association
- SSIR-51 (Soil Survey Investigations Report No. 51), Soil Survey Field and Laboratory Methods Manual, National Soil Survey Center, Method 3.2.1
- EBA Engineering Consultants Ltd., 2010, Seismic Hazard Assessment Middle and Lower Chase Dams file reference N13101249, April 14, 2010.
- Golder Associates Ltd., 1978, Report to Willis Cunliffe & Tait Limited on Site Investigation Nanaimo Dams Nanaimo, British Columbia, file reference V78040, May 1978.
- Willis Cunliffe & Tait Limited, 1980, Repairs As-builts: Removal of Middle and Lower Chase River Dam Tender No. 1445.

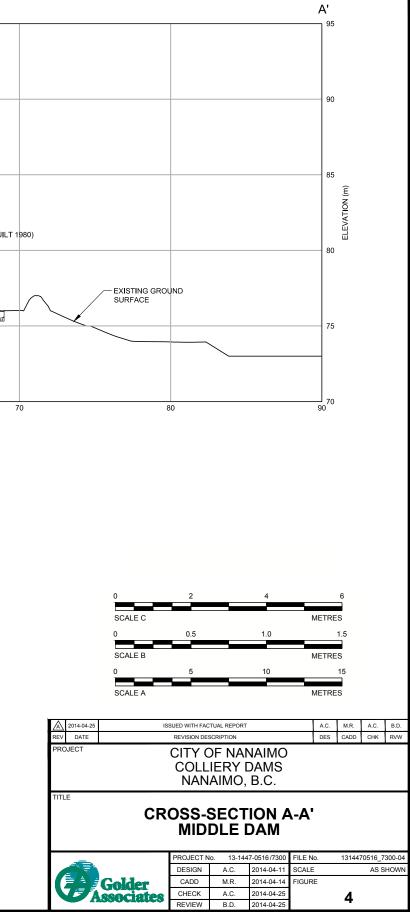


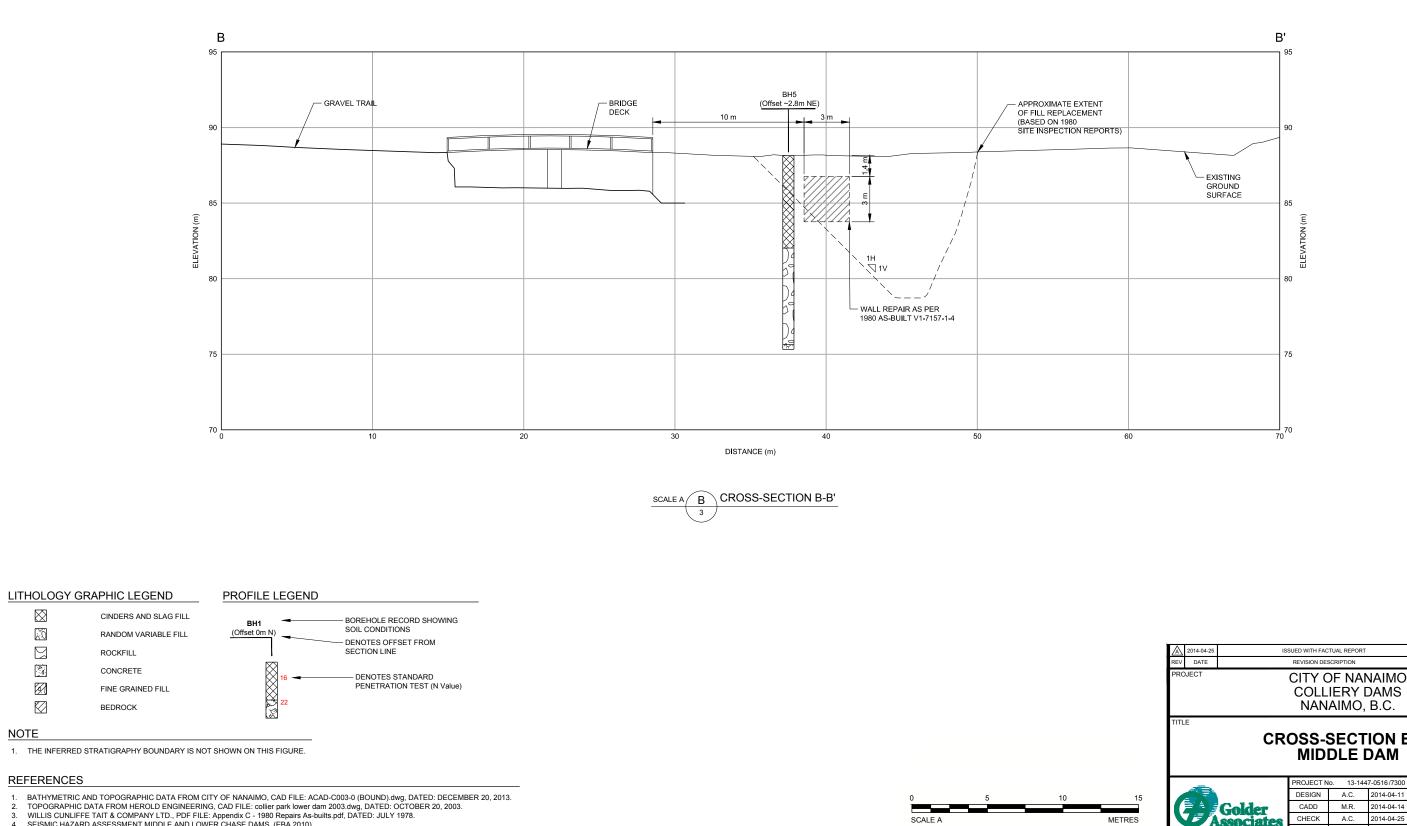
REFERENCES

- BATHYMETRIC AND TOPOGRAPHIC DATA FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, DATED: DECEMBER 20, 2013. TOPOGRAPHIC DATA FROM HEROLD ENGINEERING, CAD FILE: collier park lower dam 2003.dwg, DATED: OCTOBER 20, 2003. WILLIS CUNLIFE TAIT & COMPANY LTD., PDF FILE: Appendix C 1980 Repairs As-builts.pdf, DATED: JULY 1978. SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS. (EBA 2010) AERIAL PHOTO FROM CITY OF NANAIMO WEBSITE, IMAGE FILES: 552D.tif and 652B.tif.

Г		PROJECT N	o. 13-144	7-0516/7300	FILE No.	1314470516_7300-02
		DESIGN	A.C.	2014-04-11	SCALE	AS SHOWN
	Golder	CADD	M.R.	2014-04-14	FIGURE	
	Associates	CHECK	A.C.	2014-04-25		2
	11560/010005	REVIEW	B.D.	2014-04-25		L

SCALE

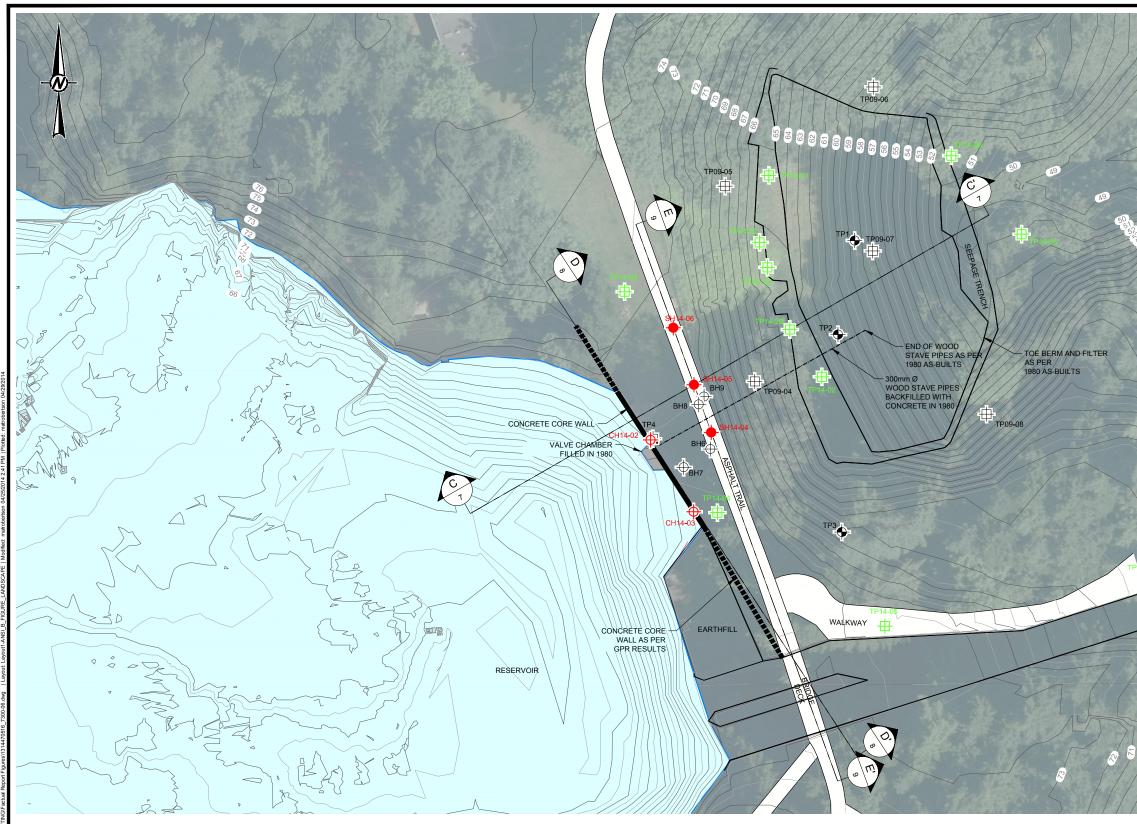




REVIEW

А 9 BH5 (Offset ~3.7m NW) SEE DETAIL 1 WALL DETAIL 1 \bigotimes EL. 85.75m NORMAL OPERATING LEVEL OF RESERVOIR 8 2<u>.5H</u> 1V 2 SEE DETAIL 2 WALL REPAIR DETAIL ELEVATION (1.6H 11 - CONCRETE WALL (0.6m THICK) SHOT ROCK FILL BUTTRESS (AS-BUILT 1980) 80 CERECE CERECE CERECE — DRAINAGE BLANKET (AS-BUILT 1980) 70 10 20 30 40 50 60 DISTANCE (m) SCALE A A CROSS-SECTION A-A' 3 LITHOLOGY GRAPHIC LEGEND \boxtimes CINDERS AND SLAG FILL õ RANDOM VARIABLE FILL \square ROCKFILL TOP OF ORIGINAL WALL -- TOP OF EXTENSION WALL ΡĄ CONCRETE Ø FINE GRAINED FILL BEDROCK CONCRETE -WALL EXTENSION 300 mm_ - EDGE OF CONCRETE REPAIR PROFILE LEGEND 1980 - EXTREMITY OF BLAST STRUCTURES DAM FILL MATERIAL BOREHOLE RECORD SHOWING BH1 SOIL CONDITIONS (Offset 0m N) - DENOTES OFFSET FROM SECTION LINE - HOLE \square - ORIGINAL WALL 20 EXTREMITY - DENOTES STANDARD PENETRATION TEST (N Value) — 15 M REBAR 12 2.27 m NOTE - TOP OF EARTHFILL 1. THE INFERRED STRATIGRAPHY BOUNDARY IS NOT SHOWN ON THIS FIGURE. 3 m 600 mm OF UPSTREAM FACE OF DAM REFERENCES WALL REPAIR DETAIL BATHYMETRIC AND TOPOGRAPHIC DATA FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, WALL DETAIL SCALE C / 1. SCALE B 2 1 DATED: DECEMBER 20, 2013. TOPOGRAPHIC DATA FROM HEROLD ENGINEERING, CAD FILE: collier park lower dam 2003.dwg, 2. DATED: OCTOBER 20, 2003. 3.

WILLIS CUNLIFFE TAIT & COMPANY LTD., PDF FILE: Appendix C - 1980 Repairs As-builts.pdf, DATED: JULY 1978. SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS. (EBA 2010)



SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS. (EBA 2010)

		JF NAN IERY [AIMO,	DAMS		
CR		SECT DLE I	ion e Dam	8-B'	
_	PROJECT N	lo. 13-144	7-0516/7300	FILE No.	1314470516_7300-05
	DESIGN	A.C.	2014-04-11	SCALE	AS SHOWN
Golder	CADD	M.R.	2014-04-14	FIGURE	
Golder	CHECK	A.C.	2014-04-25		5
11000010000	REVIEW	B.D.	2014-04-25		5

A.C. M.R. A.C. B.D.

DES CADD CHK RVW

LEGEND

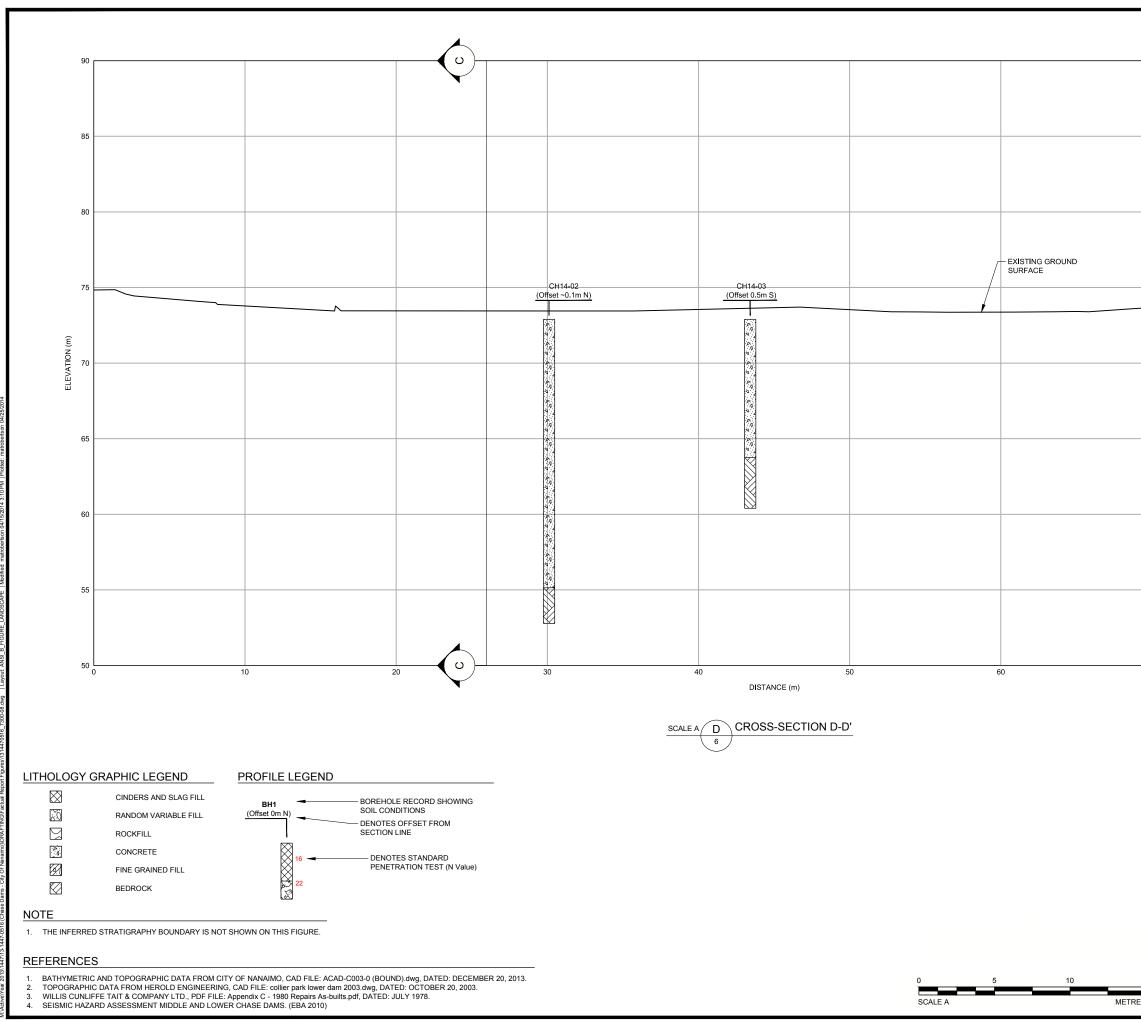
- NORMAL OPERATING LEVEL OF RESERVOIR
- \oplus 1978 BOREHOLE (GOLDER)
- 1978 TEST PIT PUT DOWN BY EXCAVATOR (GOLDER)
- \bullet 1978 TEST PIT PUT DOWN BY HAND (GOLDER)
- # 2009 TEST PIT (EBA)

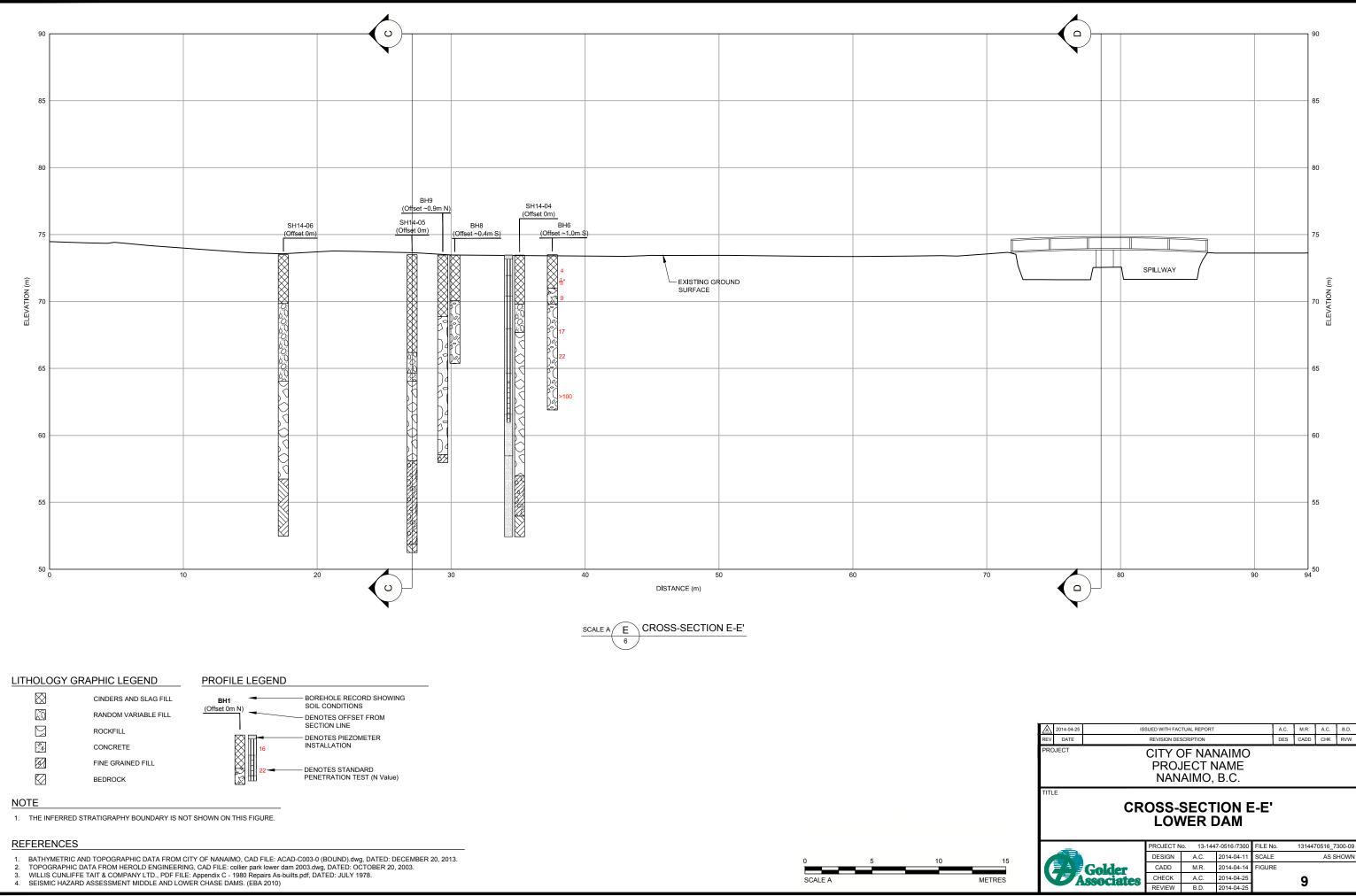
- OUTLINE OF WALL, 1.2m IN THICKNESS, AT 0.6m BELOW GROUND SURFACE
- 2014 SONIC HOLE (GOLDER)
- 2014 COREHOLE (GOLDER)
- 2014 TEST PIT PUT DOWN BY HAND (GOLDER) 0

REFERENCES


BATHYMETRIC AND TOPOGRAPHIC DATA FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, DATED: DECEMBER 20, 2013. TOPOGRAPHIC DATA FROM HEROLD ENGINEERING, CAD FILE: collier park lower dam 2003.dwg, DATED: OCTOBER 20, 2003. WILLIS CUNLIFFE TAIT & COMPANY LTD., PDF FILE: Appendix C - 1980 Repairs As-builts.pdf, DATED: JULY 1978. SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS. (EBA 2010) AERIAL PHOTO FROM CITY OF NANAIMO WEBSITE, IMAGE FILES: 552D.tif and 652B.tif.

 Φ


- 3


	V	$\overline{\checkmark}$		5	\sum	
				(5	
		111				
			46	R		
ee ee		9 8 8 8 8				
8	88 88 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80				$\sum_{i=1}^{n}$	P
						ſ
5						2
			46	5		
		E S	5-1-8 ⁻⁵⁶			*
		60 52 53 53 54 54 55 55 55 55 55 55 55 55 55 55 55				W//
	114-04-25 IS DATE	SUED WITH FACTUAL REPORT REVISION DESCRIPTION		A.C. DES	M.R. A.C. CADD CHK	B.D. RVW
PROJE	ст	CITY OF NAM COLLIERY I NANAIMO,	DAMS			
TITLE	L		PLAN			
36			7-0516/7300 FILE 1 2014-04-11 SCAL		1314470516_7 AS S	7300-06 SHOWN
TRES	Golder	CADD M.R. CHECK A.C. REVIEW B.D.	2014-04-14 FIGUE 2014-04-25 2014-04-25	RE	6	

	80
	75
	70
	65
	(m)
	9 ELEVATION (m)
TP09-07	60 ELEV
(Offset ~4.3m N)	
	55
SAND AND GRAVEL BERM	
AS PER 1980 AS-BUILTS	
	50
	45
80 90 9	⁴² 5
A 2014-04-25 ISSUED WITH FACTUAL REPORT A.C. M.R. DEV DEV	A.C. B.D.
REV DATE REVISION DESCRIPTION DES CADD PROJECT CITY OF NANAIMO	CHK RVW
COLLIERY DAMS	
NANAIMO, B.C.	
CROSS-SECTION C-C'	
LOWER DAM	
PROJECT No. 13-1447-0516/7300 FILE No. 131447	0516_7300-07
15 DESIGN A.C. 2014-04-11 SCALE	AS SHOWN
15 DESIGN A.C. 2014-04-11 SCALE CADD M.R. 2014-04-14 FIGURE CHECK A.C. 2014-04-25 FIGURE REVIEW B.D. 2014-04-25 7	AS SHOWN

	(m)				9	00
					8	5
						0
					7	'5
		SPILLWAY	, 7			
	/	SPILLWAT				(E)
					7	ci ELEVATION (m)
						LEVA
						Ш
						5
						5
					6	60
						55
70		80			5 90	50
	V					
		001155 1115	TILAL 00		1.	
	2014-04-25 REV DATE	REVISION DE			A.C DES	
	PROJECT	CITY	F NA	NAIMO		
		PRO NAN	JECT N AIMO,	NAME B.C		
	TITLE		,	5.0.		
		loss-	SECT)-D'	
		LOV	VERI	DAM		
	L	DDO ISOT	a 40.4.	17 0540 17000		1211170540 7000 00
15		PROJECT N DESIGN	o. 13-144 A.C.	47-0516/7300 2014-04-11	FILE No. SCALE	1314470516_7300-08 AS SHOWN
	Golder	CADD	M.R. A.C.	2014-04-14 2014-04-25	FIGURE	0
ES	Associates	REVIEW	A.C. B.D.	2014-04-25		8

APPENDIX A

Appendix A-Historic Investigations

Annex A Golder 1978 Investigation Lower and Middle Dam

SAM	EHOLE TYPE Rotary PLER HAMMER WEIGHT 63.6	kg. Di	२ 0Р]	74	62m			E DIAME		14 m. VI 4	6325-1-1
ELEV.	SOIL PROFILE DESCRIPTION	PHY PLOT	NUMBER	TYPE	FOOT	N SCALE		· · · · · · · · · · · · · · · · · · ·	.i		PIEZOME OR STANDP INSTALL A
DEPTH		STRATIGRAPHY	SAMPLE	SAMPLE	BLOWS /	ELEVATION	WATE	R CONTE	NT PERCI WL		ADDITION
100.8 0.0	Ground Surface										- drill v air , n sampli
	Loose to compact brown SAND & GRAVE some silt. (FILL)	2									
94.1			and a state of the second s								- lost a circula at 4.6
6.7	ROCKFILL										- hole o
91.7 9.1	End of Borehole										to 7.67 no wat encounte

¥ 78040	RECORD OF BOREHOLE 4 MIDDLE CHASE RIVER DAM LOCATION (See Figure 3) BOREHOLE TYPE Rotary SAMPLER HAMMER WEIGHT 63.6kg. DROP 762mm DATUM WCT Dwg. VI 6325-1-1											
Project No.	ELEV.	SOIL PROFILE		NUMBER	TYPE	00T	BCALE		1ł		PIEZOMETER OR STANDPIPE INSTALL ATION	
ď	DEPTH	DESCRIPTION	STRATIGRAPHY	SAMPLE NI	SAMPLE T	BLOWS / FOOT	ELEVATION	WATER C	ONTENT PE		ADDITIONAL Lab. Testing	
	100. 8 0.0	Ground Surface									drilling with air	
				7	Ro	31						
		Loose to compact SAND GRAVEL, COBBLES, BOULDERS (FILL)		2		13						
				3	μ	>100						
	-											
	90.1 10.7	End of Borehole									- rods stuck in hole	
		-										
	VERT / :		Go	lde	٦e	As	500	iates			DRAWN <u>R.C.</u> CHECKED	

	RECORD OF BOREHOLE 5 MIDDLE CHASE RIVER DAM								
LOCA	(See Figure 3)						DRING DATE March 28-29, 1978		
BOR	EHOLE TYPE Air Track	f				80	DREHOLE DIAMETER 50 mm		
SAM	PLER HAMMER WEIGHT - L	B. DF	ROP	-	IN.	DA	TUM WCT Dwg. VI 6325-1-1		
	SOIL PROFILE]				PIEZOMETER		
		LOT	E			SCALE	OR STANDPIPE		
ELEV.		- AH	NUMBER	TYPE	FOOT		INSTALL ATION		
DEPTH	DESCRIPTION	TRATIGRAPHY PLOT	AMPLE N	SAMPLE 1	ILOWS / F	ELEVATION	WATER CONTENT PERCENT ADDITIONAL WP W WL LAB. TESTING		
		<u> </u>	n	•					
100.8	Ground Surface								
0.0									
	Loose to compoct								
	sand & gravel (FILL)								
		i.							
94.7							-lost air		
6.1							circ. at 6.1m		
							no return		
	ROCKFILL								
88.3 12.5									
12.3	TILL-LIKE MATERIAL End of Borehole		1				- rods stuck		
	-								
	TICAL SCALE	Go	ld	er	As	550C	iates DRAWN R.O. CHECKED GL		

Project No. 128242_

·····	SOIL PROFILE	15							. <u></u>	PIEZOMETE
ELEV. DEPTH	DESCRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE	WATER WP	CONTENT W O		STANDPIP INSTALL ATI ADDITIONAL LAB. TESTI
100.3 0.0	Ground Surface									
07.4	Very loose cinders, slag, etc. (FILL)		1 2		4 1/180					
97.8 2.5 96.6 3.7	Loose to compact SAN GRAVELS, COBBLES(FIL		3			Lost				- Lost mu
	Loose gravels		4	-	17					circulati
	CODDIES & Doulders (ROCKFILL)		5	17	22	Lost				
			-							
88.7			6	2	>100	Lost				Hole casea - lost mu at 10.3m, no re 10.3m - 116.m - Stopped bac
11.6	End of Borehole									possibility o jamming roo hole,also ca damaged fr
	-									driving into rockfill

		an di na kana sa kana s	REC LOWE	ORD) ()F AS/	BC	REH		7 0A1	1			in a faith an an ann an an ann an an ann an an an]
	LOCA	TION (See Fig			-,		-					harch	, 15	5, 197 8	
\$	BOREHOLE TYPE Rotary BOREHOLE DIAMETER //									114 m					
-282824	SAMPLER HAMMER WEIGHT 636 kg.					ROP 762 mm DATUM WCT Dwg. VI 6325-1-							?5-1-1		
No/_		SOIL PRO	FILE								ù. <u></u> ,			PIEZOMETER	
Project N	ELEV. DEPTH	DES	CRIPTION	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE		ER C	ONTEN W	T PER W	CENT	STANDPIPE	
		coarse SAN	Surface brown fine to ID, some graver {cinders (FILL,	(- /	20.	17								
	1.5	Very coa with cob (Rock F	rse gravels bles i boulders ull)		2	*	16	lost						-Lost mud circ. at 15m - drill with air to 4.6m - no return	
	95.7 4.6	End of E	Borehole											stopped because of possibility of jamming rody in hole.	
								· · ·							
		-													
	VERT	ICAL SCALE		Go	ld	er	As	soc	ate	S		_			

BOR	TION (See Figure 2) THOLE TYPE Rotary PLER HAMMER WEIGHT 63.6 k					80 80	<i>ER DA</i> DRING DATE DREHOLE D TUM W, C,	Morca	114 n	nm
ELEV. DEPTH	SOIL PROFILE	STRATIGRAPHY PLOT	SAMPLE NUMBER	SAMPLE TYPE	BLOWS / FOOT	ELEVATION SCALE	WATER CO	ONTENT PE		PIEZOMETE OR STANDPIPE INSTALLATIC ADDITIONAL LAB. TESTIN
100.3	Ground Surface Loose black SAND GRAVEL, SLAG, CINDE (FILL)									Drill win air
96.9 3.4	Loose coarse GRAVELS COBBLES & BOULDERS (ROCKFILL)									
92.2 8.1	End of Borehole									- hole case to 6.7 m. return from 6.7 - 8.1 m 6.7 - 8.1 m for casing damoged
	-									

		ITION (See Figure 2) EHOLE TYPE <i>Air Trock</i>	k				B C	REHO	LEC	DIAMET	FER	50	, 1978 mm 25-1-1
												PIEZOMETER	
	ELEV.	DESCRIPTION	PHY PLOT	NUMBER	TYPE	FOOT	N SCALE		ł	4	J	I	OR STANDPIPE INSTALLATION
	EPTH		STRATIGRAPHY	SAMPLE		BLOWS / FOOT	ELEVATION			ER CONTENT PERCENT P W WL 			ADDITIONAL LAB. TESTING
· · · ·	00.3 0.0	Ground Surface											
		Loose Cinders, Sand, gravels											
	95.7 4.6												- lost air circ. at 4.6n
													-no return
		Cobbles & boulders (ROCKFILL)											
2	35.4	-											
ε	35.4 14.9 14.8	TILL-LIKE MATERIAL											
	5.5	End of Borehole											
	VERT	ICAL SCALE	Go					<u> </u>				<u> </u>	DRAWN <u>R.P.</u>

ſ

.]	[AB]	LE II	
RECORD	OF	TEST	PITS

B. Middle Chase River Dam

1.16.10.10.10

Testpit No.	Depth (meters)	Strata Description				
1	0 - 0.5	Sandy SILT, some clay, gravel cobbles, many roots. (Fill)				
	0.5 - 0.6	Black TOPSOIL & ORGANICS				
	0.6	BEDROCK				
2	0 - 0.2	TOPSOIL & ORGANICS				
	0.2	BEDROCK				
3	0 - 0.3	Loose, fine to coarse GRAVEL, trace sand & silt. (Fill)				
4	0 - 2.4	Loose to compact, brown SAND & GRAVEL, some clayey silt, cobbles & boulders. (Fill)				

Golder Associates

TABLE III RECORD OF TEST PITS

Testpit No.	Depth (meters)	Strata Description
1	03	Loose SLAG, CINDERS, COAL (Fill)
	.36	TOPSOIL & ORGANICS
	.6 - 1.2	Firm, brown sandy, gravelly SILT roots, occ. cobble
2	0 - 1.2	Loose slag, some SAND & GRAVEL (FILL)
3	09	Loose SLAG, CINDERS & ROOTS (Fill)
	.9 - 1.2	Dense, grey brown, silty gravelly SAND, some cobbles (Till-like).
4	0 - 1.5	Loose CINDERS, SLAG, sand roots. (Fill)
	1.5	ROCKFILL

C. Lower Chase River Dam

. Sta

North States

Golder Associates

Annex B EBA 2009 Testing Pit Records

Project: Chase River Dam Seismic Inspections Project Number: N13101249 Task: Lower and Middle Chase Dam Testpitting Excavation Method of Testpits: Spade and Pick Axe Date: March 6, 2009

Middle ChaseDam:

TABLE 1: TESTPIT - TP09-01 START: 12:45PM, END: 1:15PM										
Depth (m)		Soil Description	Sample							
From	То		Туре	Depth (m)	N/PP					
0.00	0.05	Veneer of grass/topsoil								
0.05	1.10	SAND (FILL) – gravely, some cobbles to 200 mm, trace silt, dense, angular to rounded gravel and cobbles, moist, greyish brown, trace organics (roots) to 0.30 m. Groundwater not observed Testpit backfilled on completion.	D	0.60-0.70	SA-01					

TABLE 2: TESTPIT - TP09-02 START: 1:25PM, END: 2:00PM										
Depth (m)		Soil Description	Sample							
From	То		Туре	Depth (m)	N/PP					
0.00	0.05	Veneer of grass/topsoil								
0.05	1.10	SAND (FILL) – gravely, some cobbles to 200 mm, trace silt, dense, angular to subrounded gravel and cobbles, moist, greyish brown, trace organics (roots) to 0.3 m. Groundwater not observed Testpit backfilled on completion.	D	0.80-0.90	SA-01					

TABLE 3: TESTPIT - TP09-03 START: 2:10PM, END: 2:30PM									
Depth (m)		Soil Description	Sample						
From	То		Туре	Depth (m)	N/PP				
0.00	0.20	SAND (TOPSOIL) – gravely, trace silt, compact, subrounded gravel, damp, blackish brown, organics (roots)							
0.20	0.80	SAND – gravely, trace cobbles to 250 mm, dense, subangular to subrounded gravel and cobbles, reddish brown, trace roots. Groundwater not observed	D	0.70-0.80	SA-01				
		Testpit backfilled on completion.							

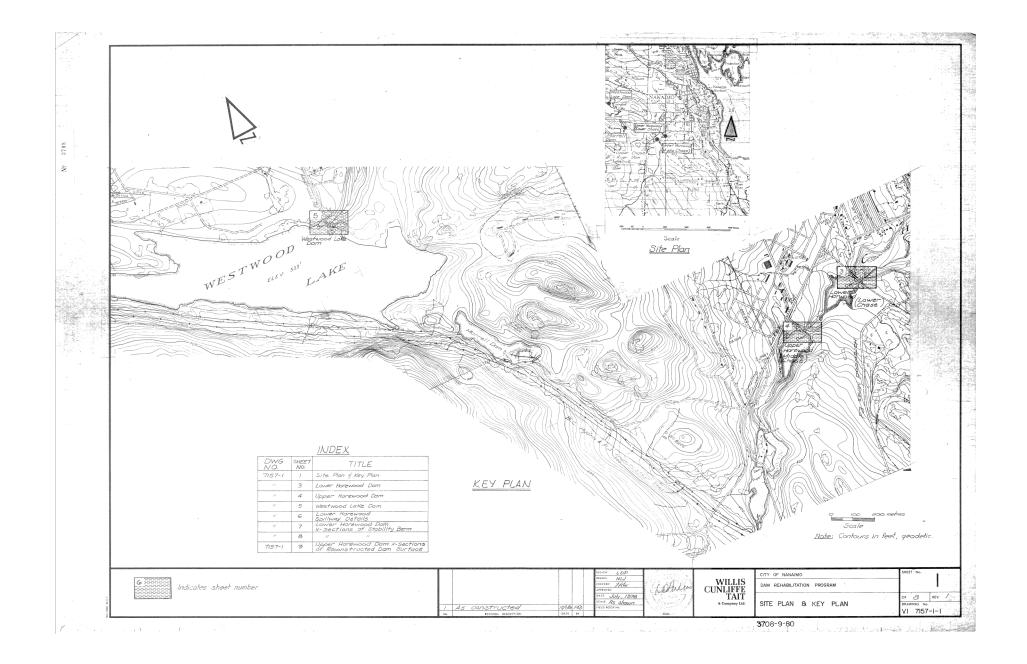
Lower ChaseDam:

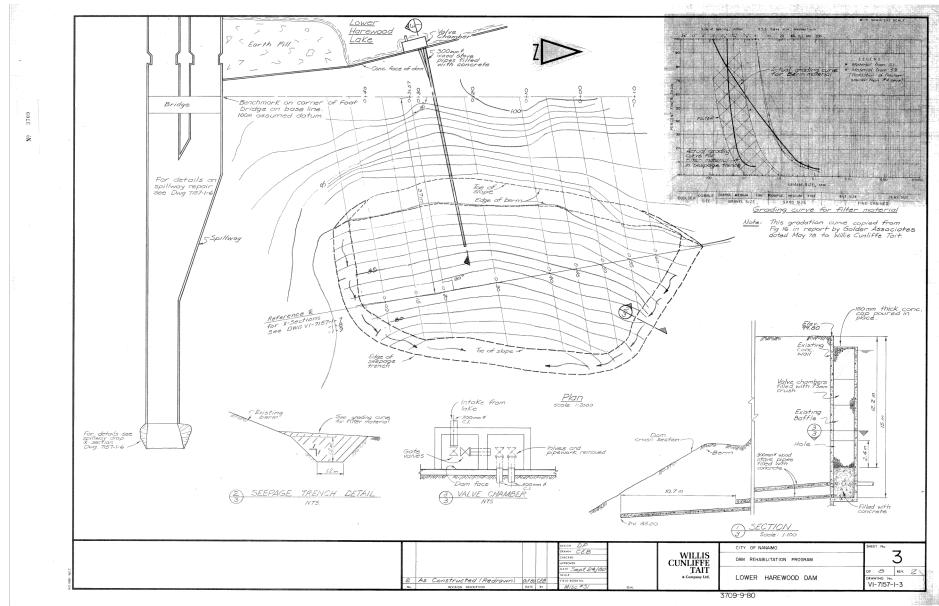
TABLE 4: TESTPIT - TP09-04 START: 11:40AM, END: 12:00PM									
Depth (m)		Soil Description	Sample						
From	То		Туре	Depth (m)	N/PP				
0.00	0.01	Veneer of mowed brush/topsoil							
0.01	0.50	CLAY (FILL) – some silt, trace gravel, firm, low to medium plastic, rounded gravel, moist, brown, organics (roots).							
0.50	1.30	SLAG AND CINDERS (FILL) – some sand, trace coal, loose to compact, subrounded to rounded slag, cinders, sand and coal, damp, grey/brown, trace organics (roots) to 1.0 m. Groundwater not observed	D	0.80-1.00	SA-01				
		Testpit backfilled on completion.							

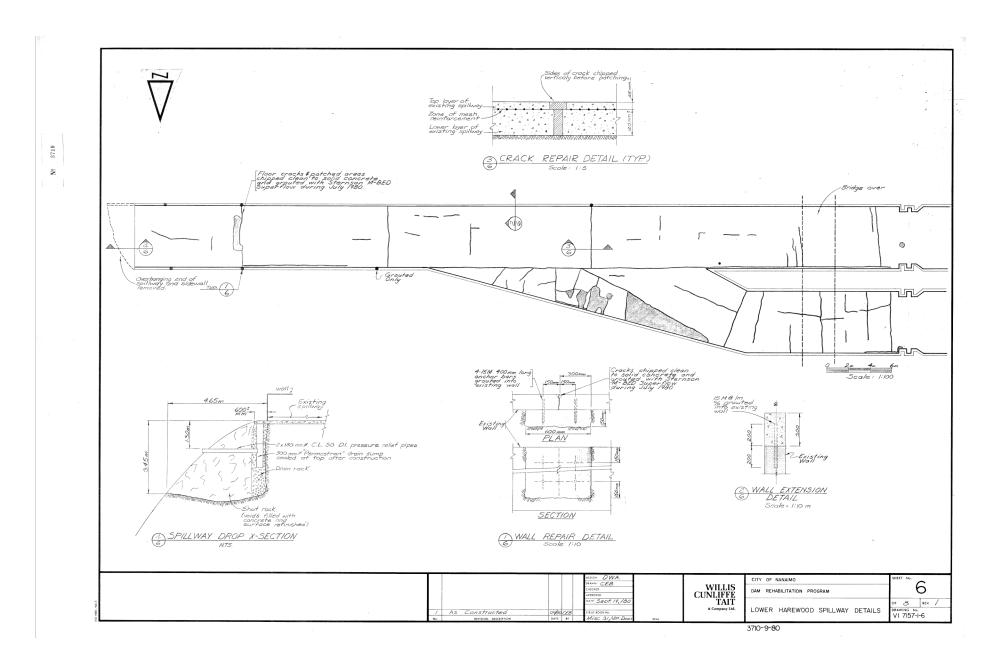
TABLE 5: TESTPIT - TP09-05 START: 11:10AM, END: 11:30AM									
Depth (m)		Soil Description	Sample						
From	То		Туре	Depth (m)	N/PP				
0.00	0.05	Veneer of grass/topsoil							
0.05	1.30	SLAG AND CINDERS (FILL) – some sand, trace coal, loose to compact, subrounded to rounded slag, cinders, sand and coal, damp, grey/brown, trace organics (roots) to 1.0 m. Sloughing to 1.0 m Groundwater not observed Testpit backfilled on completion.	D	0.60-0.80	SA-01				

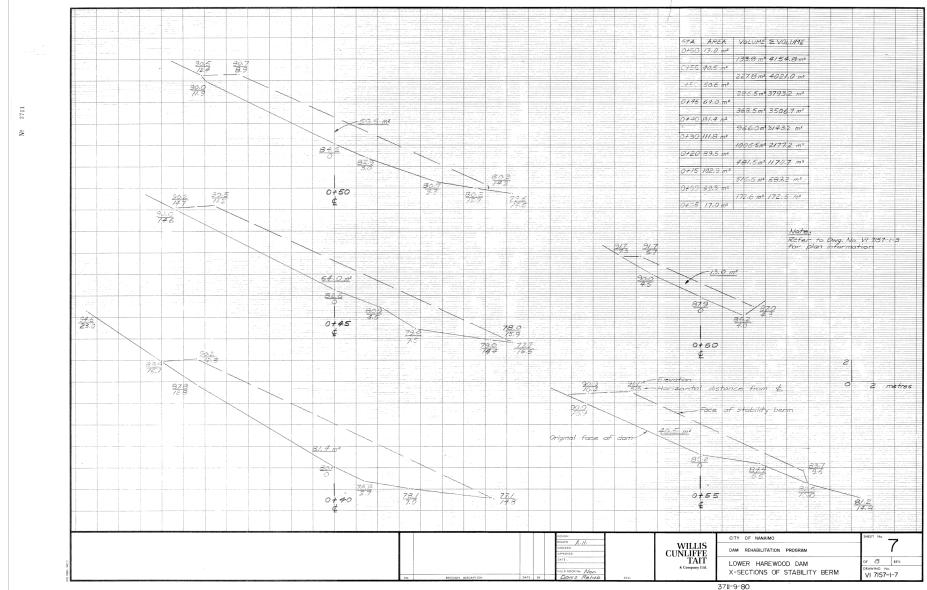
TABLE 6: TESTPIT - TP09-06 START: 10:30AM, END: 11:00AM									
Depth (m)		Soil Description	Sample						
From	То		Туре	Depth (m)	N/PP				
0.00	0.40	SAND (TOPSOIL) – some silt, some gravel, trace clay, dense, subrounded gravel, damp, black and brown, trace organics (roots)							
0.40	0.80	SAND (GLACIAL TILL) – some gravel, some silt, trace clay, dense to very dense, subrounded gravel, damp, light brown. Groundwater not observed Testpit backfilled on completion.	D	0.60-0.70	SA-01				

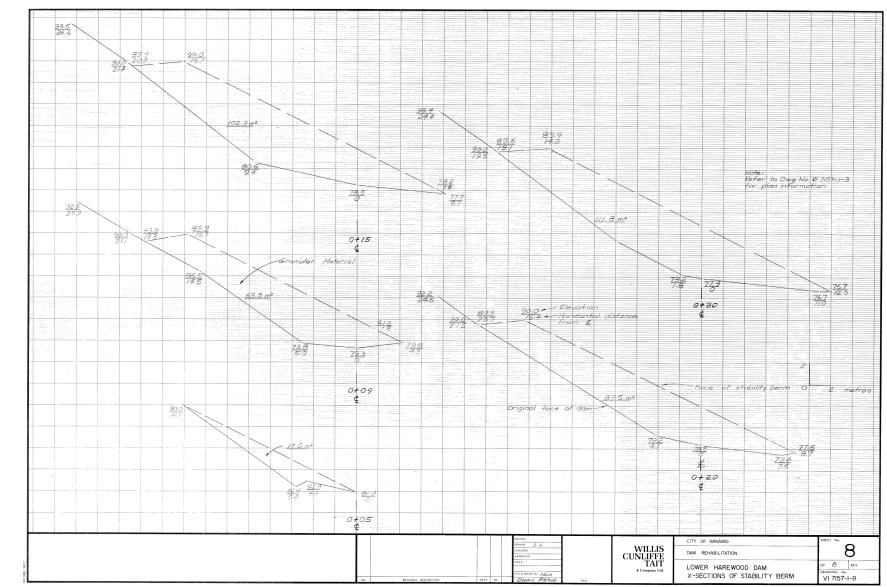
TABLE 7: TESTPIT - TP09-07 START: 9:00AM, END: 9:40AM									
Dept	h (m)	Soil Description	Sample						
From	То		Туре	Depth (m)	N/PP				
0.00	0.05	Veneer of grass/topsoil							
0.05	0.15	SAND (TOPSOIL) – trace silt, compact, subrounded medium sand, moist, brown and black, organics.							
0.15	1.10	SAND (FILL) – gravely, trace cobbles to 250 mm, dense, rounded to subrounded gravel and cobbles, moist, brown. At 0.9 m, becomes wet Groundwater not observed Testpit backfilled on completion.	D	0.60-0.80	SA-01				


TABLE 8: TESTPIT - TP09-08 START: 9:50AM, END: 10:20AM									
Depth (m)		Soil Description	Sample						
From	То		Туре	Depth (m)	N/PP				
0.00	0.80	COBBLES & CLAY – gravely, some silt, dense, angular cobbles and gravel, wet, brown, trace organics (roots) to 0.5 m The soil encountered is likely weathered bedrock in a clay/silt matrix Groundwater not observed Testpit backfilled on completion.	D	0.60-0.70	SA-01				

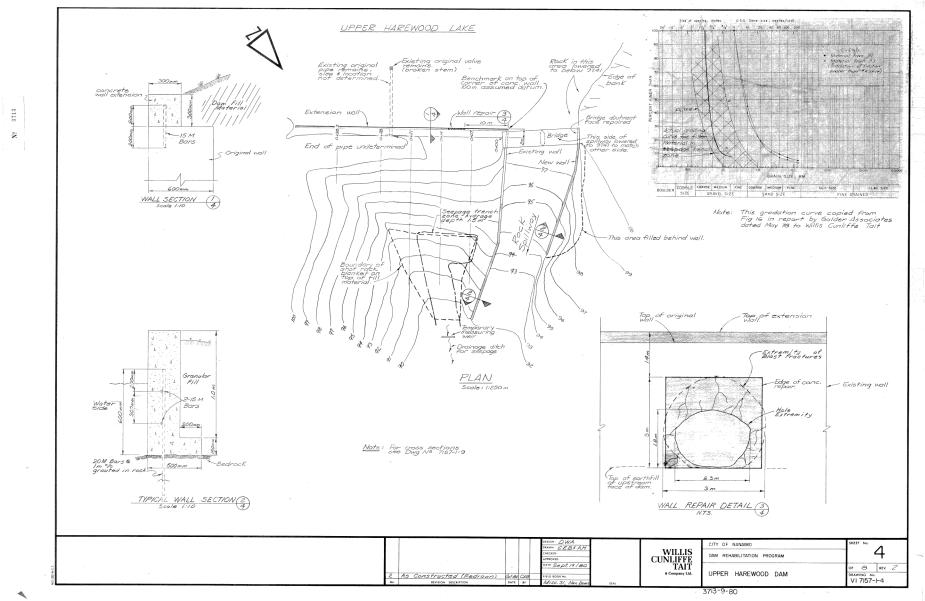


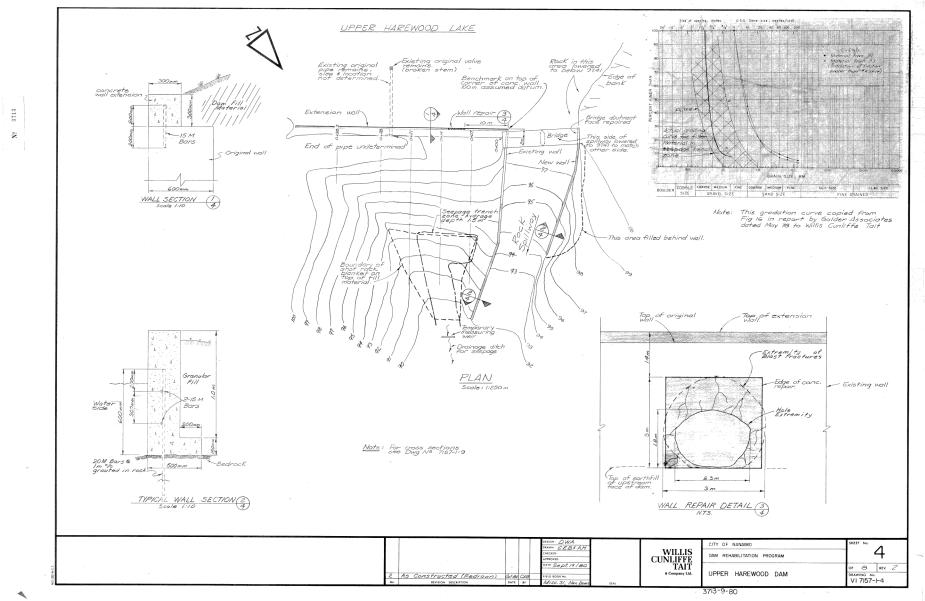


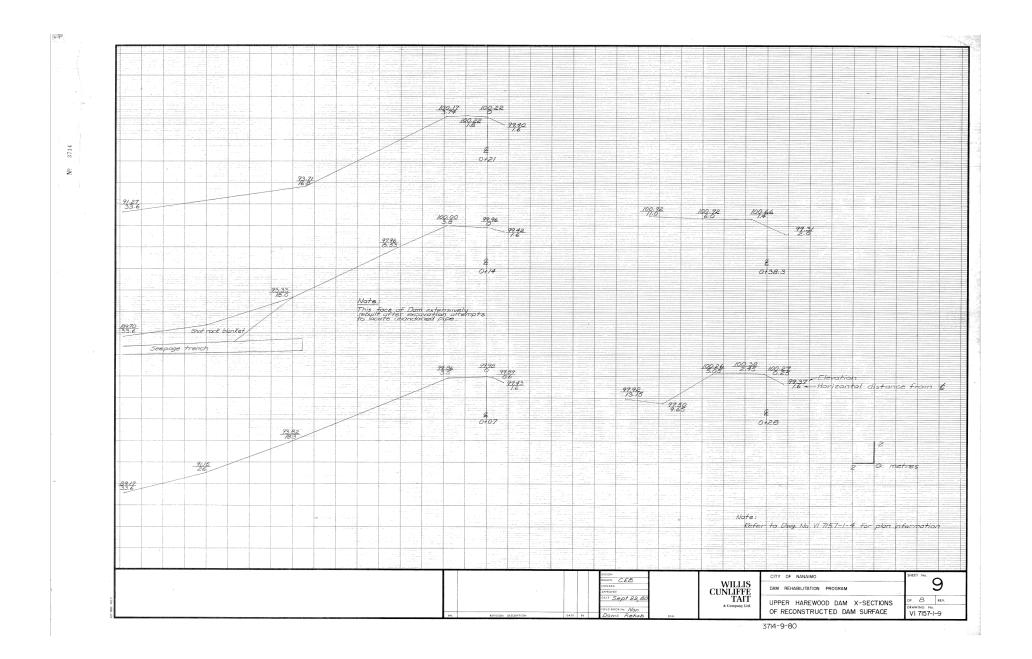

Annex C Willis Cunliffe and Tait 1980 As-Built Report



الممريم




3712


Ň

3712-9-80

ار .

APPENDIX B

Appendix B-Geophysical Investigations

Annex A Surface Investigation of Lower and Middle Dam

DATE April 30, 2014

REFERENCE No. 1314470516-003-TM-Rev1-7000

- TO Anne Crowley Golder Associates Ltd.
- **cc** Jenna Girdner; Bruce Downing; Herb Hawson; Max Maxwell

FROM Robert Luzitano

EMAIL rluzitano@golder.com

SUMMARY OF SURFACE GEOPHYSICS AT COLLIERY DAMS, NANAIMO, BC

This technical memo provides results from surface geophysical surveys that were carried out at the Lower and Middle Colliery Dams in Nanaimo, BC during middle January 2014. Note that results from a subsequent corehole geophysical investigation carried out at the Lower Dam are reported in a separate technical memo.

1.0 OBJECTIVES

Objectives of the geophysical investigations were directed at gaining some basic information regarding the construction and underlying geometries of the dams and some of the current properties of the materials. Resulting information is to be used in support of a geotechnical assessment of the dams by various engineers. These objectives and corresponding geophysical surveys included:

- Profiling internal layering of Lower and Middle Dams using moderate frequency ground penetrating radar (GPR at 200 MHz, possibly limited to 3-5 m depth);
- Potentially identifying "water table," and other possible variations in water saturation, within Lower and Middle Dams (if conditions allow) from the GPR profiles;
- Potentially profiling underlying bedrock or till interface at both dams, but most importantly beneath the Lower Dam. A second, low frequency/high-powered, GPR system would be used on both dams (where bedrock is shallow), and the deeper-sensing/lower-resolution seismic refraction method would be used only on the Lower Dam;
- Lower Dam—Confirm existence/location of buried concrete core-wall suspected to continue towards the spillway using GPR;
- Lower Dam—Within "The Peninsula," obtain information regarding the upper few metres of fill material, such as the possible existence of rock-fill versus sand-and-gravel fill and its general layering and possibly the existence of shallow bedrock using GPR;
- Lower Dam—Potentially obtain a general (1-D) seismic shear-wave velocity (Vs) versus depth profile of the dam fill using the lowest cost method (MASW—Multi-channel Analysis of Surface Waves) for this initial investigation; should MASW not work, higher-cost downhole seismic could be carried out after proposed boreholes are drilled. MASW would require minimal effort by recording some additional data during the seismic refraction survey without additional set-up;

- Middle Dam—Attempt locating the Low-Level-Outlet (LLO), at least near the toe of down-stream slope, using GPR; and
- Characterizing amount of reinforcement within the concrete core-wall (e.g. existence of rebar and its general spacing and extent) as discernable from the top of the wall along the crest of both dams using higher frequency (400 MHz) GPR.

Note that higher frequency radar signals yield higher resolution, whereas lower frequency yields the possibility of greater depth of penetration. Additionally, where bedrock occurs within the depth-range of radar, GPR would provide a higher resolution profile compared to seismic refraction. Basic principles of the geophysical methods used are discussed in the methodology section below.

These geophysical investigations are part of a more comprehensive geotechnical investigation, and cannot be viewed in isolation from that context.

2.0 SCOPE OF WORK

The scope of work reported here was limited to the surface geophysical investigation which used GPR at both dams and seismic refraction/MASW at the Lower Dam. The various GPR surveys targeted features of different scales and depths requiring the use of two different GPR systems and three different antenna frequencies. Additionally, the GPR surveys reported here were for a larger/deeper scale than that previously carried out on the Lower Dam wall face (for rebar) by Klohn Crippen Berger; in the investigation reported here, GPR surveys were primarily to investigate internal layering and other possible variations within the dams.

The surface geophysical investigation was limited to a total of three days of fieldwork split between the Lower and Middle Dams as follows:

- Lower Dam (2 field days)
 - GPR (1 field-day) for internal layering (200 MHz) and possibly the basal interface (high-power 50 MHz, penetration permitting)
 - 1 2 profiles (200 MHz) up the downstream face and possibly some cross-line profiles (cross-line locations determined, in part, by radar features observed on the main profile up the face);
 - 1 GPR profile (50 MHz) up the downstream face to attempt profiling the basal interface;
 - At least 1 GPR profile along top of concrete wall to assess rebar extent as allowed by radar penetration and resolution using one or both of 200 MHz and 400 MHz antennas (depending on access);
 - One or more cross-line profiles on the crest near the spillway to possibly confirm position of buried concrete core-wall and to obtain information regarding peninsula fill material; and,
 - Seismic Refraction/MASW (1 field-day, 2 seismic spreads) Depending on site access/conditions: one spread down the down-stream face near the middle of the dam; and one spread approximately parallel to the crest positioned at least 15 m away from the concrete wall. Survey to use a 24-channel seismic system with 4.5 Hz geophones spaced 1-2 m along approximately linear spreads. Seismic sources to include: sledge-hammer, passive ambient noise recordings, and possibly an 8-gauge seismic source.

- Middle Dam (1 field day)
 - GPR only for internal layering (200 MHz) and possibly the basal interface (high-power 50 MHz, penetration permitting)
 - 1 2 profiles (200 MHz) up the downstream face and possibly some cross-line profiles (cross-line locations determined, in part, by radar features observed on the main profile up the face);
 - 1 GPR profile (50 MHz) up the downstream face to attempt profiling the basal interface; and
 - At least 1 profile along top of concrete wall to assess rebar extent as allowed by radar penetration and resolution using one or both of 200 MHz and 400 MHz antennas (depending on access).

3.0 METHODOLOGY

The methods used in this geophysical investigation provided a relatively quick and cost-effective, non-invasive means to achieve the objectives. Preliminary geophysical results were used to assist development and planning of subsequent geotechnical investigations. Basic principles of the geophysical methods of this investigation are discussed in the following sections.

3.1 Ground Penetrating Radar (GPR)

Ground penetrating radar (GPR) operates on the principle that electromagnetic waves (radio pulses), emitted into the ground by a transmitter (Tx) antenna, are partially reflected at subsurface interfaces and can be detected by a receiver (Rx) antenna as illustrated in Figure B-1a. Reflections arise due to contrasts in the dielectric constant of subsurface materials, due primarily to variations in soil moisture content. In particular, there is a strong reflectivity contrast between porous, partially saturated soils and relatively impervious bedrock or most utilities and buried metal such as rebar. Radar range or maximum penetration is controlled by the electrical conductivity of subsurface materials; as conductivity increases, intrinsic attenuation increases, reducing the effective radar sounding range. Conductivity is typically enhanced with increasing moisture content, depending on the concentration of dissolved salts and the fraction of clay minerals present.

The radar systems used here incorporate precise timing electronics to measure the reflection transit-time, from transmitter to receiver, which depends on reflector range and radar signal velocity. A radar profile is acquired by moving the antennas along the ground surface as the radar system records a series of scans at regular intervals. Resulting data are displayed as a series of oscilloscope-like traces having amplitude proportional to reflection strength as illustrated in Figure B-1b. Given an estimate of radar velocity, which can be measured from GPR profiles, corresponding reflector depths may be determined.

GPR data were further processed and interpreted in the office using the ReflexW software by Sandmeier Software in order to determine radar signal velocities and corresponding depth estimates (discussed further in results section below).

3.2 The Seismic Refraction Method

In the seismic refraction method an elastic wave pulse is generated at shallow depth and propagates radially into On encountering boundaries between media having contrasting mechanical properties, the subsurface. including density, elasticity and consequently seismic velocity, the incident wave pulse is partially reflected and partially transmitted into underlying strata (Figure B-2). The so-called ray-path of the incident-transmitted pulse is bent or refracted at the boundary in accordance with Snell's law. In particular, if seismic velocity increases across the boundary, the ray-path is refracted toward the boundary. As the angle of incidence increases, so does the angle of refraction until for some critical incidence angle $i_c = \sin^{-1} (v_n / v_{n+1})$, depending on the relative seismic velocity vn /vn+1, the refracted wave pulse travels along the boundary and acts as moving source of a secondary wave front which propagates upward into overlying strata. This so-called head wave ultimately reaches the surface where the arrival is detected by a linear array of motion sensitive detectors known as geophones. Since the critically refracted raypath is also the fastest path, this signal is the first to arrive at the geophones. By measuring the elapsed time between initial pulse generation at the shot-point and subsequent arrival of related waves at successively more distant geophones, relatively straight forward graphical analysis and associated calculations yield estimates of layer velocities and thicknesses. More refined interpretations are obtained via elaborate computer-based techniques.

3.2.1 Limitations of Seismic Refraction

As with any geophysical method, seismic profiling involves indirect measurements of subsurface conditions and is subject to the limitations of the particular method. Standard limitation on depth determinations from seismic refraction profiling is accuracy to within approximately 10% of the actual value, subject to the assumptions of the seismic refraction method including:

- Layered subsurface;
- Generally, layer slope variations less than 20 degrees (not ground surface slope);
- Increasing velocity with depth;
- Relatively gradual changes in layer topography;
- Shallowest interface generally deeper than half the geophone spacing; and
- **3**-D effects not significant (no large variation in lithology perpendicular to line).

3.3 MASW (Multi-channel Analysis of Surface Waves)

This method was employed for a relatively small effort added to the seismic refraction survey to possibly obtain a general shear-wave velocity (Vs) versus depth profile for the least expense. We note that MASW shotpoints were positioned to minimize adverse interference from the concrete core-wall. However, MASW is intended for sites of simple structure with limited lateral variations, conditions that are largely violated at the Lower Dam site. Due to the relatively complex structure at the site, MASW was not successful and therefore, this method is not discussed further. Subsequently, a Vs-depth curve has been obtained for the upper 9 m of dam fill from a downhole seismic survey in borehole SH14-05 and is reported separately.

4.0 FIELD WORK

The surface geophysical investigation was conducted during January 15-17, 2014 by two geophysicists from Golder's office in Burnaby, BC. Positions of the geophysical profiles are shown on the site plans of the Lower Dam and Middle Dam in Figures B-3 and B-4, respectively. Endpoints of the survey lines were marked in the field by wooden stakes or pinflags, marking paint, and survey flagging for subsequent location. Approximate topographic variation was measured using a hand-held inclinometer along the seismic lines (Figure B-3) and along L-1 on the Middle Dam (Figure B-4).

GPR profiling used two different radar systems: a moderate frequency system (SIR-2 by GSSI) using 200 MHz and 400 MHz antennas; and a low frequency (50 MHz), high-powered (1000 V Tx), system (pulseEKKO-100 by SSI) to maximize the depth of penetration. The SIR-2 with the 200 MHz antenna was used to focus on the internal features of the dam fill, and the 400 MHz antenna was used on the concrete core-walls. Additionally, the high-powered system was run in step mode where the antennas were held stationary while 256 soundings were stacked into a single trace to further enhance the signal against noise, whereas the moderate frequency system was run in continuous mode to maintain high lateral resolution.

Seismic refraction profiling used a 24-channel seismic system (Geode by Geometrics) with twenty-four 4.5 Hz geophones spaced 2 m along the recording spread. A percussion source (12-lb sledge hammer striking a metal base plate) provided sufficient energy with stacking of 6 to 18 successive hits at a given shotpoint. On each of the two lines, a total of 8 or 9 shotpoint locations were recorded, including 5 shotpoints within the geophone spread and 1 to 3 off-end shotpoints positioned up to 40 m off either end of the spread (Figure B-3).

4.1 Lower Dam: Site Conditions and Coverage

The downstream face of the Lower Dam (sloping approximately 27°-36°) includes a toe-berm covering approximately the lower half of the slope; the top of this berm makes a "bench" across the width of the dam face (see Photograph B-1 below). The toe-berm was understood to consist of sand-and-gravel fill which was added in 1980 and was grass covered during the survey. The upper slope was understood to generally consist of slag and cinder fill and was covered by vines (approximately 0.5 m deep) during the survey. These vines prevented the GPR antenna from making direct contact with the ground surface, consequently, somewhat degrading the radar signal penetration into the ground.

Photograph B-1: Lower Dam—looking down geophysical line L-1 from the dam crest. The red box staged on the berm bench is the 200 MHz GPR antenna.

Survey coverage on the Lower Dam (Figure B-3) totalled 10 GPR profiles (including one repeated at low frequency) and 2 seismic profiles consisting of:

- Two 200 MHz GPR profiles down the dam face—L-1 and L-2;
- One 200 MHz GPR cross-profile on the face, along the top of the toe-berm—L-3 (Photograph B-2);
- One 50 MHz GPR profile down the toe-berm section of L-1, starting from the toe of the upper slag slope (Photograph B-3);
- Two seismic refraction profiles on the dam face—L-1 and L-3;
- Seven GPR profiles on the dam crest (all at 200 MHz, except for L-9 at 400 MHz) consisting of:
 - Extension of L-1 across the crest;
 - L-4 along the top of the face;
 - Eastern portion of L-5 and L-6 and all of L-7 acquired primarily to confirm the buried concrete core-wall;
 - Western portion of L-5 and L-6 and all of L-8 acquired to investigate "The Peninsula;" and
 - L-9 acquired on the top of the exposed additional wall (Photograph B-4).

Profiles L-5 and L-6 are partitioned into east and west by the retaining wall that separates The Peninsula from the dam crest.

Photograph B-2: Lower Dam—looking north along geophysical line L-3.

Photograph B-3: Lower Dam—from the toe-berm bench, looking south with the high powered GPR electronics in the wheelbarrow and the 50 MHz antennas profiling on line L-1.

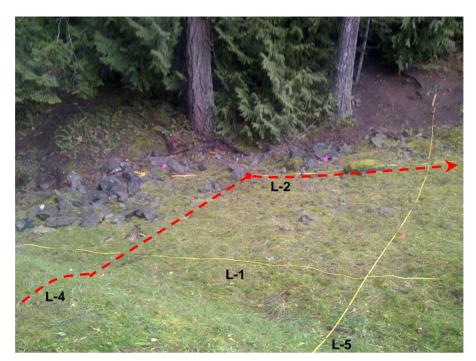
Photograph B-4: Lower Dam—from The Peninsula looking east, adjacent to the spillway (on the right). The red box on top of the retaining wall is the 400 MHz GPR antenna at the south end of line L-9.

4.2 Middle Dam: Site Conditions and Coverage

The downstream face of the Middle Dam slopes from approximately 12° at the toe to approximately 25° near the crest. Bedrock outcrop occurs around the toe of the dam and spans the floor of the spillway. The dam face is entirely covered with grass, but with rock fill exposed within approximately the lower half of the slope (Photographs B-5 and B-6).

Survey coverage on the Middle Dam (Figure B-4) totalled 9 GPR profiles (including one repeated at low frequency), including 5 on the dam slope and 3 on the crest. The 9 profiles consisted of:

- Two 200 MHz GPR profiles down the dam face—L-1 and L-2 (bedrock outcrop within the bottom 3 m of the 40 m long L-1, see Photographs B-5 and B-6);
- Three 200 MHz GPR cross-profiles within the lower 17 m of the dam face targeting the Lower-Level-Outlet—L-3, L-4, and L-5 (Photograph B-7);
- One 50 MHz GPR profile on the dam face—L-1 (Photograph B-8);
- Two 200 MHz GPR profiles along the dam crest—L-6 and L-7; and
- One 400 MHz GPR profile acquired on the top of the concrete core-wall—L-8.



Photograph B-5: Middle Dam—from the crest, looking down the face between lines L-1 and L-2 marked by measuring-tapes. Bedrock outcrop occurs within the red circled area and spans the floor of the spillway.

Photograph B-6: Middle Dam—looking up from concrete weir. Lines L-1 and L-2 are marked by the measuring-tapes. Bedrock outcrop occurs within the red circled area and spans the floor of the spillway. The red box on L-2 is the 200 MHz GPR antenna.

Photograph B-7: Middle Dam—from the spillway on Cross-line L-5 with cross-line L-4 and main-lines L-1 and L-2 marked.

Photograph B-8: Middle Dam—High-powered 50 MHz antennas on line L-1. Bedrock outcrop occurs within the red circled area and spans the floor of the spillway.

5.0 **RESULTS AND INTERPRETATION**

The following discussion of results is organized by the different areas surveyed and the objective (such as the Lower Dam face and bedrock profiles). Areas of the Lower Dam are presented first, followed by areas of the Middle Dam. However, first some general discussion regarding the data and processing will be provided.

5.1 GPR: General Results and Processing

At both dam sites, GPR data quality was generally good to excellent with depth of penetration ranging between approximately 2 - 4 m through the fill materials for both the 200 MHz and the high-powered 50 MHz antennas. At the Lower Dam, the slag interface mostly blocked the radar signal of both frequencies from penetrating deeper. At the Middle Dam, the 50 MHz antennas provided approximately the same penetration to bedrock as the 200 MHz antennas; both profiling bedrock to approximately 3.5 m depth and to approximately 24 m up the slope from the toe of the dam. On the concrete core-walls of both dams, depth of penetration of the 400 MHz signal ranged between approximately 1 - 3 m from the top of the walls.

GPR data were processed using the Reflex-W reflection processing software by Sandmeier Software. Data processing included:

- **Dewow Filter** (using filter lengths of--17 ns for 50 MHz, 7 ns for 200 MHz, and 3 ns for 400 MHz);
- Background Removal Filter;
- Velocity Analysis from diffraction hyperbola fitting and trial FK-migrations. Resulting average velocity was
 used for producing a general depth scale for the radar profiles which are recorded in time (the average
 velocity is noted on the depth scale);
- **FK-migration** to clarify the image by collapsing diffraction hyperbola and repositioning scattered signal into more correct spatial positions, for a given single average velocity; and
- **Gain** (Energy Decay gain).

Figures of example profiles with interpretations annotated are provided in the discussions below.

5.2 Seismic Refraction: General Results and Processing

The seismic refraction survey on the Lower Dam resulted in mostly clear signal from the underlying bedrock. Seismic processing and modeling was performed using the SeisImager software package by Geometrics.

The interpretation and modeling procedure reported here involved:

- 1) Picking arrival times of identified first arrivals;
- 2) Incorporating topography into model; and
- 3) Seismic modeling using a combination of time-term and tomographic inversion algorithms.

Resulting seismic profiles are discussed below.

5.3 Lower Dam (Slope): Fill Structure from GPR

While some layering within the individual fill materials is faintly visible in the GPR images, this layering does not exhibit the regular planar character typical of construction lifts.

The slag/cinder fill was mostly opaque to the radar signals at both 200 MHz and 50 MHz with maximum penetration of approximately 1 m into the slag. On the vine-covered upper slope, penetration was more limited on L-1 due to a thicker "vine layer" that caused poor antenna coupling with the ground, whereas thinner vines on L-2 allowed for better antenna coupling and up to 1 m penetration. However, within the 1 m penetration depth, no significant features are apparent in the resulting upper slope L-2 profile (figure not included). On the sand-and-gravel toe-berm, the signal penetrated up to approximately 4 m through the berm material and slightly into the underlying slag/cinder fill. The slag fill interface produced a large amplitude reflection at 3 m to 0.5 m depth from 20 m to 30 m distance (upper slope) along Line 1 as apparent in Figure B-5. Further down slope the reflection abruptly becomes weak. This abrupt drop in amplitude could be due to a change in material, including a mix of slag with other fill type or a lack of slag entirely. This amplitude difference could also be enhanced by seepage of rain water along the slag interface from the toe of the upper slope.

Below the sand-and-gravel berm layer, the subsurface reflection radar signal quickly fades to noise from energy scattered through the air from trees and above-ground infrastructure.

Within the sand-and-gravel berm layer, some faint layering can be observed, of which two examples are marked with yellow dashed lines in Figure B-5; however, as noted above, none of the layering appears to be due to construction lifts. Additionally, a number of discrete objects or heterogeneities are observed by their isolated higher amplitude and by their diffraction hyperbolas (in the upper plot of the non-migrated image in Figure B-5); some examples are marked by red crosses. These heterogeneities could include coarser grained deposits, including cobbles, and/or variations in compaction and corresponding moisture retention.

Similar to the profile of L-1, the interpreted profile of L-3 is displayed in Figure B-6 where the interpreted slag fill interface appears to vary in depth between approximately 1.5 to 3 m below the berm crest.

5.4 Lower Dam (Slope): Bedrock Profiles from Seismic Refraction

Resulting seismic refraction profile models for L-1 and L-3 are presented in Figures B-7 and B-8, respectively. The seismic models fit the data well, as illustrated in the travel-time plots (Figures B-9 and B-10) that compare actual and modelled travel-times. The bedrock profile of L-1 is also in reasonable agreement with borehole SH14-06, as shown in Figure B-7.

Comparing the two profiles, the model of L-1 exhibits an extra—third—layer along the base of the overburden (p-wave velocity of 1050 m/s). This extra layer is interpreted to be due to the difference in the sampling of overburden structure by the refracted seismic p-waves along the two different lines; along L-3 (which is perpendicular to the canyon) this layer is probably less extensive and, therefore, undetected. The other two overburden layers have similar velocities between the two profiles and are considered to be essentially the same layers between the profiles. Note, however, that the overburden "seismic layering" is due to differences in stiffness of material which can be due more to compaction, and/or water saturation, than actual changes in fill type.

Bedrock was clearly modeled on both profiles with similar velocities that are indicative of bedrock: below L-1 3675 m/s and below L-3 3886 m/s (Figures B-7 and B-8). These modelled bedrock interfaces could include isolated occurrences of glacial till not resolved by the survey. At the intersection of L-1 and L-3, the somewhat shallower bedrock of L-3 could be due, at least in part, to out-of-profile refraction from the "bedrock hump" observed on L-1 immediately upslope of L-3 (a 3-D effect).

Figure B-11 provides a combined GPR/seismic-bedrock cross-section of L-1. This cross-section clearly illustrates that the slag fill interface interpreted from GPR is a continuation of the upper slope beneath the toe berm.

Note that since these profiles have not been legal-surveyed, elevations were estimated for some key locations from the topographic site plans of this report. Therefore, to distinguish that these elevations are not legal-surveyed elevations, we have added 1000 m to our estimated elevations as shown on the cross-sections of Figures B-7, B-8, and B-11.

5.5 Lower Dam (Crest): L-1 and L-4 GPR Profiles

GPR profiles on the dam crest of L-1 and L-4 (200 MHz) penetrated up to approximately 3 m into the fill material. Although some minor layering and occasional heterogeneities were observed in the field records, none of these features seemed of sufficient interest to warrant additional processing, plotting, and interpretation. The minor layering appears similar to that noted in the toe-berm fill for L-1—regular planar construction lifts are not apparent. Should interest arise in these two profiles, they could be processed and further interpreted in future.

One or more possible buried utilities are observed on L-1 and an obvious utility is observed near the south end of L-4 which also appears to occur on L-5, L-6, and L-7.

5.6 Lower Dam: Buried Core-wall

The 200 MHz GPR profiles of L-5, L-6, and L-7 suggest that the buried concrete core-wall does continue towards the spillway. Signal penetration was up to approximately 2.5 m depth with noticeably wet soil at surface. However, the images are somewhat obscured by interfering heterogeneities in the fill and by diffractions from the edge of the paved trail; the additional processing of migration does not make identification any clearer. Despite this interference, a feature that is consistent with the wall appears at the projected location on each of the profiles. The best image (L-7) is provided as an example in Figure B-12 where the depth to the wall is estimated at approximately 0.8 m.

5.7 Lower Dam: Peninsula

The 200 MHz GPR profiles of L-5, L-6, and L-8 suggest that bedrock may occur within the peninsula at approximately 2 to 3 m depth below grade; however, this interpretation should be confirmed with a testpit or augerhole. As shown in Figure B-13 of L-8, the complex of reflections marked with red dashed lines could all be reflected from an irregular bedrock surface where most of these would be scattered from out-of-profile. Most of these deeper reflections; however, these characteristics could also be caused by a significant increase in water saturation from a diffuse "water-table." The "water-table" interpretation is deemed less likely since the lake water level was only about 1 m below the Peninsula ground surface.

As noted in Figure B-13, the interval between approximately 0.5 - 2 m depth exhibits characteristics suggesting mostly coarse grained fill, but including some layering and possibly isolated "lenses" of finer-grained fill. Above approximately 0.5 m depth, diffraction hyperbola (scattering) is less evident with laminar reflections more dominant, suggesting finer-grained and more layered fill and soil.

5.8 Lower Dam: Newer Core/Retaining Wall

The 400 MHz GPR profile recorded along the top of the core/retaining wall (L-9) is presented in Figure B-14. This wall is actually an additional raise on top of the original core-wall; however, this wall bends at the north end of The Peninsula (at approximately the 30 m position of L-9), apparently leaving the core-wall and forming a retaining wall along the back edge of The Peninsula (see photograph in Figure B-14). North-dipping layers are observed in the wall face, including layers of cobbles; similarly dipping reflections are also observed in the radar image (see photograph at bottom of Figure B-14 and radar reflections marked with yellow dashed lines between L-7 and L-6). Penetration of the radar signal varies between approximately 1 and 2 m below the top of the wall.

Rebar appears to be lacking within this wall, or at least it does not occur in the regular pattern typical of rebar. Typically, rebar produces small distinct diffraction hyperbola that are regularly spaced, often forming an undulating "layer" (for example, see Figure B-17 from the Middle Dam wall). While numerous small diffractions are observed in the L-9 profile, they suggest coarse-grained material rather than rebar.

There is at least one feature that exhibits ringing that is typical of metal (noted in Figure B-14—possibly a pipe or rod, larger than typical rebar). Also, there are a number of features that exhibit multiples that could arise from a water-filled pipe or void (one example noted).

As indicated in Figure B-14 with red line segments, a number of unknown planar structures (of nearly 0.5 m length) occur at irregular intervals and orientations. Occurrence of these structures appears to be limited to within approximately 0.5 m depth from the wall top and only north of the bend where the wall is over-top of the original core-wall.

South of the bend (to approximately the 47-m position), a complex of large amplitude reflections occurs between approximately 0.8 and 1.8 m depth (Figure B-14). This complex of reflections consists of a prominent, mostly continuous, reflection capping more discontinuous reflections and diffraction hyperbolas from scatterers. A possible interpretation is that the capping reflection could be from the bottom of the retaining wall and underlying reflections and diffractions are from coarse-grained fill.

5.9 Middle Dam (Slope): Bedrock and Fill Profiles

The bedrock surface was interpreted beneath the lower half of the slope from both 50 MHz and 200 MHz GPR profiles on L-1. Interpreted GPR profiles of both frequencies are shown in Figure B-15 which illustrates some minor differences in the bedrock profile due to differences in the scale of features reflecting the different frequencies of radar signal. The higher powered 50 MHz signal did not significantly extend the depth of coverage compared to the 200 MHz. A possible explanation may be that, beyond the 21-m position, the bedrock surface may become too steep to produce a sufficient reflection, regardless of frequency. In both profiles, the deepest interpreted bedrock is approximately 3.5 m depth below ground surface.

A number of example overburden layers were interpreted in the higher resolution 200 MHz image of L-1 in Figure B-15. Some of these interfaces are relatively planar, suggesting engineered lifts of fill; however, there appears to be different sections of fill where the interfaces dip in opposite directions (dipping downslope or upslope).

5.10 Middle Dam (Slope): LLO

The Low Level Outlook (LLO) could not be identified within the three GPR profiles (L-3, L-4, and L-5). Resulting radar images were too cluttered and distorted due to the significant variation of the ground surface and heterogeneities within the fill (including rock fill). Reflections from many of these heterogeneities are identical to the reflection expected from the LLO.

5.11 Middle Dam (Crest): GPR Profiles L-6 and L-7

Bedrock was interpreted at either end of both 200 MHz GPR profiles, L-6 and L-7, and other features observed in the two profiles are similar. Profile L-7 is shown in Figure B-16 since it passes through boreholes BH-3 through BH-5. Bedrock outcrops within a few metres of either end of L-7 and occurs within the southern two metres of L-6. Along L-7, the bedrock surface is interpreted to deepen steeply, possibly with a near vertical face approximately 2 m north of BH-4. The three boreholes were drilled to between 9.1 and 12.8 m without encountering bedrock. Within the 2.5 - 4 m depth range of the GPR profiles, the borehole logs indicate sandand-gravel fill, including some cobbles and boulders, to at least 6 m depth where rock fill was encountered in BH-5 and BH-3.

GPR profiles L-6 and L-7 (Figure B-16) suggest possibly two different fill types separated by an interface that dips northward towards the spillway from within approximately 0.5 m of the ground surface near the 27 m position. North of this boundary, the radar image exhibits a number of large amplitude reflections interpreted as interfaces within the sand-and-gravel fill; south of the boundary, such reflections are much lower amplitude. Additionally, evidence suggests that the material north of the boundary generally has faster radar velocity. Collectively, the evidence suggests that the fill south of the boundary may be of finer grained material than the sand-and-gravel fill encountered in the boreholes to the north.

A number of the fill interfaces interpreted in Figure B-16 are relatively planar, suggesting engineered lifts of fill; however, similar to those noted for L-1 above, there appears to be different sections of fill where the interfaces dip in opposite directions, often suggesting wedge-shaped lifts.

5.12 Middle Dam: Concrete Core-wall

At least two levels of rebar are interpreted in the 400 MHz GPR profile that was acquired along the top of the concrete core-wall with radar penetration depth ranging between approximately 1.5 to 3 m. In Figure B-17 a number of the rebar signatures are marked with red crosses to provide an example of the rebar pattern; such signatures are observed across the length of the profile but are more difficult to pick within the southern third of the profile due to numerous large amplitude reflections that interfere with the rebar signatures. Typical horizontal spacing of the rebar is approximately 0.8 - 1 m with an occasional extra rebar in between. Spacing in the vertical direction (between the two "layers" identified within the upper metre) is estimated to range between approximately 0.2 to 0.6 m; this spacing may continue to greater depths but individual rebar signatures are difficult to identify, especially with the interference from reflections off of interfaces.

Identification of the interfaces marked in Figure B-17 requires coring. Internal concrete reflections can occur from changes in constituent material and/or separate pours. Some of these interfaces may contain elevated levels of moisture to produce the anomalously large amplitude reflections.

6.0 SUMMARY AND CONCLUSIONS

The surface geophysical surveys successfully provided additional information for all but two of the eight objectives: confirming the LLO beneath the toe of the Middle Dam, and obtaining a general Vs curve of the Lower Dam from MASW data piggy-backed on the seismic refraction survey. The LLO of the Middle Dam could not be identified in the GPR profiles due to the degree of clutter and distortion from the heterogeneous fill (including rock fill). Similarly, on the Lower Dam there was too much lateral variation to allow a reliable Vs (shear-wave velocity) profile to be modelled using MASW. However, subsequently, a Vs model has been obtained down to 9 m depth from a downhole seismic survey that is reported separately.

Generally, the radar signal penetrated most of the fill materials to between 2 - 4 m depth below grade, except for the slag/cinder fill at the Lower Dam that yielded a maximum penetration of approximately 1 m. The seismic refraction survey on the Lower Dam profiled the underlying inferred bedrock surface along both seismic profiles. Primary information for each area is highlighted below.

On the Lower Dam, highlights of the information gained from the surface geophysical investigation include:

1) **Fill layering and heterogeneities –** Most GPR profiles exhibit reflections from layering and heterogeneities within the fills; however, none of this apparent layering exhibits the regular planar character typical of construction lifts.

In particular, the three GPR profiles on the face revealed some internal layering and heterogeneities within the sand-and-gravel toe-berm, and tracked the underlying slag-fill interface to approximately 4 m depth, possibly to within a few metres above the toe of the dam. GPR profiles suggest a possible material change of the slag-fill approximately 10 m down the slope from the toe-berm crest.

- 2) **Variations in water saturation –** GPR profiles on the face and crest suggest some variations in water saturation probably due to rain water seepage and retention of moisture along heterogeneities.
- 3) **Bedrock depth** Along L-1, bedrock depth varies from approximately 2 m below the toe of the dam to approximately 14 m below the upper slope. Along L-3, bedrock depth varies from approximately 6 m near the north side to approximately 12 m near the south side.
- 4) Buried original concrete core-wall The original concrete core-wall appears to continue towards the spillway at the same orientation as the exposed portion. Top of the buried core-wall is estimated to be at approximately 0.8 1 m depth below present ground surface.
- 5) **"The Peninsula" –** The three GPR profiles exhibit a distinct set of reflections and scattering between approximately 2 and 3 m depth that could be caused by an irregular bedrock surface. More details on interpreted fills are discussed above. This interpretation requires confirmation from a testpit or augerhole to at least 2 3 m depth.
- 6) Within the additional/newer core-wall Rebar appears to be lacking, or at least it does not occur in the regular pattern typical of rebar. While numerous small diffractions are observed, they suggest coarse-grained material rather than rebar. At least 13 unknown planar structures were identified. More details on these and other features are discussed above.

On the Middle Dam, highlights of the information gained from the surface geophysical investigation include:

 Fill layering and heterogeneities – Most of the GPR profiles exhibit clear reflections interpreted to be from layering and heterogeneities within the fills. A number of the interfaces appear to be relatively planar, suggesting engineered lifts of fill; however, there appears to be different sections of fill where the interfaces dip in opposite directions, often suggesting wedge-shaped lifts.

Additionally, GPR profiles along the crest suggest that two distinct sections of fill may exist, possibly consisting of predominantly different grain sizes. The two sections appear to be separated by an interface that dips northward towards the spillway from within approximately 0.5 m of the ground surface at the 27 m position on L-7.

- 2) **Variations in water saturation –** GPR profiles on the slope and crest also suggest some variations in water saturation probably due to rain water seepage and retention of moisture along heterogeneities.
- 3) **Bedrock depth** Along GPR profile L-1, bedrock outcrop was observed within approximately 3 m up-slope of the wall at the toe of the dam. Up-slope from the outcrop, bedrock was interpreted to approximately 3.5 m depth beneath approximately 24 m up-slope from the wall at the toe of the dam.

Along the GPR profiles L-6 and L-7 on the dam crest, bedrock was interpreted to range between approximately 0.2 and 2.5 m depth at both the north and south ends of the profiles where outcrop occurs within approximately 3 m of the profile. The bedrock surface appears to deepen steeply, possibly with a near vertical face approximately 2 m north of BH-4.

- 4) **Low Level Outlet (LLO) –** The LLO could not be identified in the GPR profiles due to the degree of clutter and distortion from the heterogeneous fill (including rock fill).
- 5) Core-wall Rebar appears to occur at a typical horizontal spacing between approximately 0.8 1.0 m, occasionally with an occasional extra rebar located in between. Spacing in the vertical direction is estimated to range between approximately 0.2 to 0.6 m; however, this is based on only the two shallowest "layers" of rebar observed.

A number of interfaces within the concrete wall were identified, possibly from changes in constituent material and/or separate pours. Some of these interfaces may contain elevated levels of moisture as suggested by anomalously large amplitude reflections. Coring could provide confirmation of these interfaces if appropriate.

7.0 GEOPHYSICS LIMITATIONS

Standard of Care: Golder Associates Ltd. has conducted this investigation in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing in British Columbia, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied, is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

Verification: It is recommended that subsurface conditions interpreted through geophysical survey techniques be verified by physical sampling and/or inspection, in order to confirm and calibrate the data interpretation. Once verification data is available through future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the interpretations, conclusions and recommendations of this report, and to provide amendments, as required.

While a number of probable utilities have been identified in this investigation using GPR, note that utilities have not been mapped exhaustively and that such mapping was beyond the scope of this investigation.

8.0 CLOSURE

This memorandum has been prepared based on the information obtained for the purposes outlined above. Should additional site investigation data become available, Golder Associates should be requested to review this report in light of this information, and provide revised and/or additional recommendations as appropriate.

We trust that this report meets your immediate requirements. Please contact the undersigned should you have any questions or concerns.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

ORIGINAL SIGNED

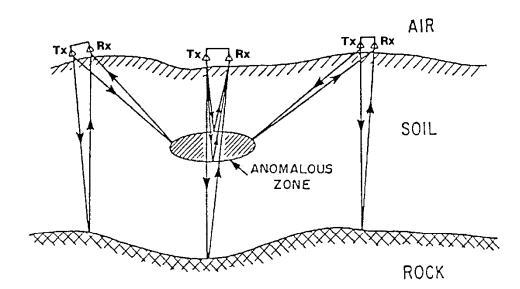
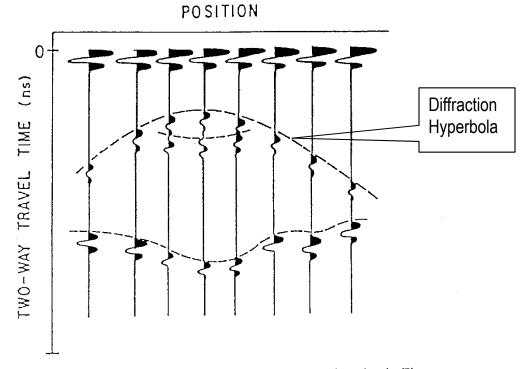
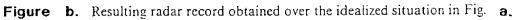
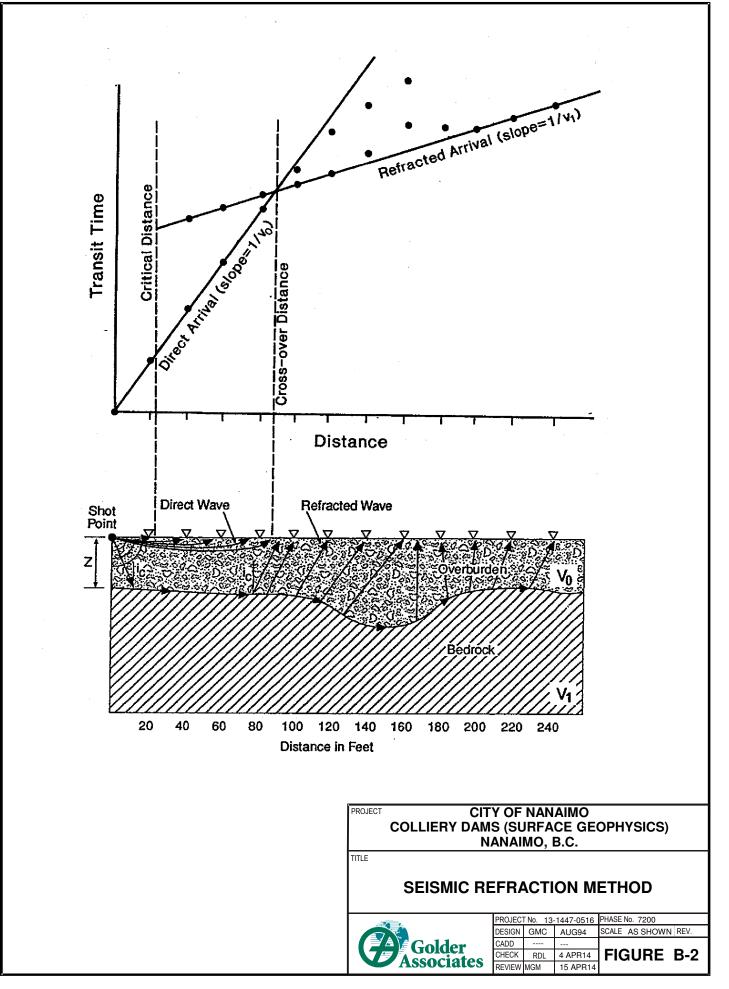
Robert Luzitano, M.Sc. Senior Geophysicist

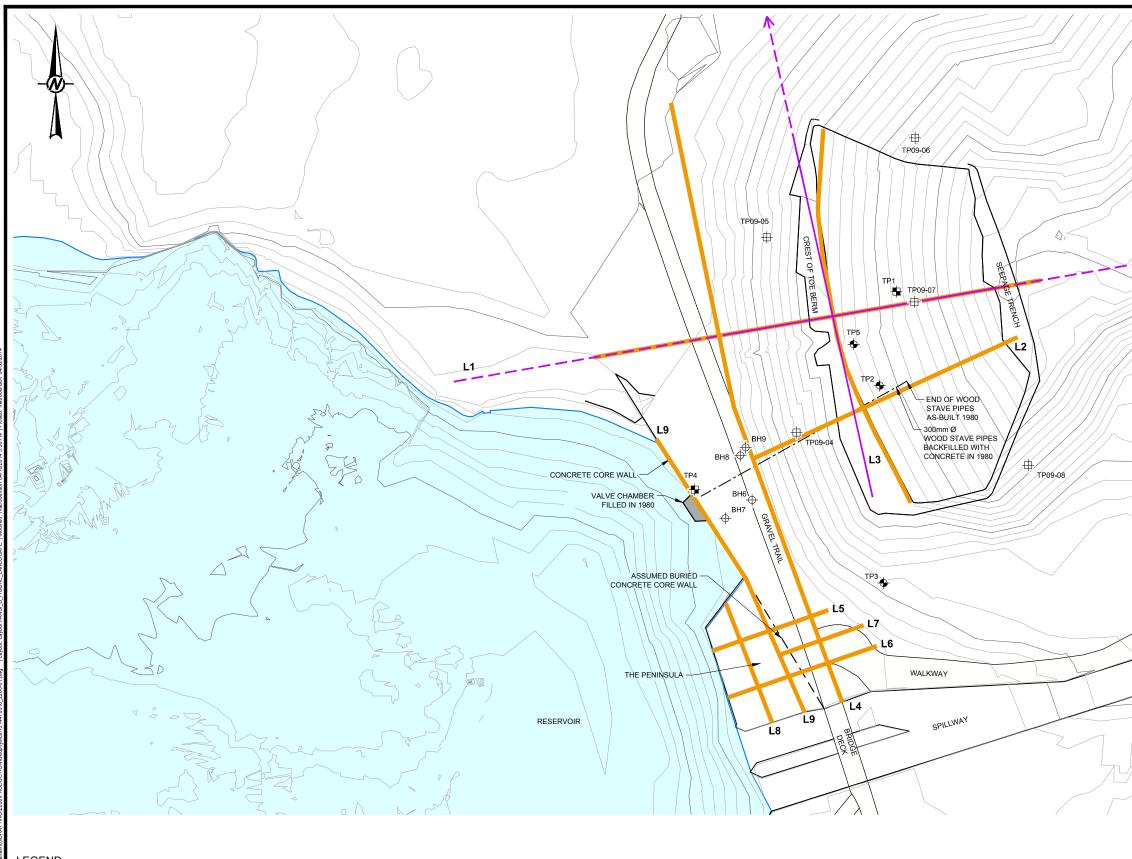
Michael (Max) Maxwell, Ph.D., P.Geo., RMC Principal, Senior Geophysicist

RDL/MGM/sn

Attachments:	Figure B-2: Figure B-3: Figure B-4: Figure B-5: Figure B-6: Figure B-7: Figure B-7: Figure B-9: Figure B-10: Figure B-11:	Ground Penetrating Radar Seismic Refraction Method Geophysics Surface Investigation Locations Lower Dam Geophysics Surface investigation Locations Middle Dam Lower Dam (Face): GPR 200 MHz – L-1 (Lower-Berm) Lower Dam (Face): GPR 200 MHz – L-3 Lower Dam (Face): Seismic Refraction Profile: L-1 Lower Dam (Face): Seismic Refraction Profile: L-3 Lower Dam (Face): Seismic Refraction TT-Curve/Model Fit Lower Dam (Face)-L-1: Seismic Refraction TT-Curve/Model Fit Lower Dam (Face)-L-3: Seismic Refraction TT-Curve/Model Fit Lower Dam (Face)-L-1: Combined Seismic & GPR Interpretation Lower Dam (Buried Wall): Example GPR Interpretation L-7
	Figure B-11:	Lower Dam (Face)-L-1: Combined Seismic & GPR Interpretation
		Lower Dam (Buried Wall): Example GPR Interpretation L-7
	•	Lower Dam (Peninsula): Example GPR Interpretation L-8
		Lower Dam: GPR L-9 (400 MHz) on Concrete Wall
		Middle Dam (Slope): GPR L-1 (50 & 200 MHz)
		Middle Dam (Crest): GPR L-7 (200 MHz)
	Figure B-17:	Middle Dam (Core-wall): GPR L-8 (400 MHz)

o:\final\2013\1447\13-1447-0516\1314470516-003-tm-rev1-7000\1314470516-003-tm-rev1-7000 colliery dams surface geophysics 30apr_14.docx


Figure a. Conceptual illustration of the radar being used in the reflection profiling mode on soil over bedrock.

-								
PROJECT CITY OF NANAIMO COLLIERY DAMS (SURFACE GEOPHYSICS) NANAIMO, B.C.								
TITLE								
GROUND PENETRATING RADAR								
	PROJEC	TNo. 13-	1447-0516	PHASE No. 7200				
	DESIGN	GMC	AUG94	SCALE AS SHOWN REV.				
Golder	CADD							
Golder	CHECK	RDL	4 APR14	FIGURE B-1				
	REVIEW	MGM	15 APR14					

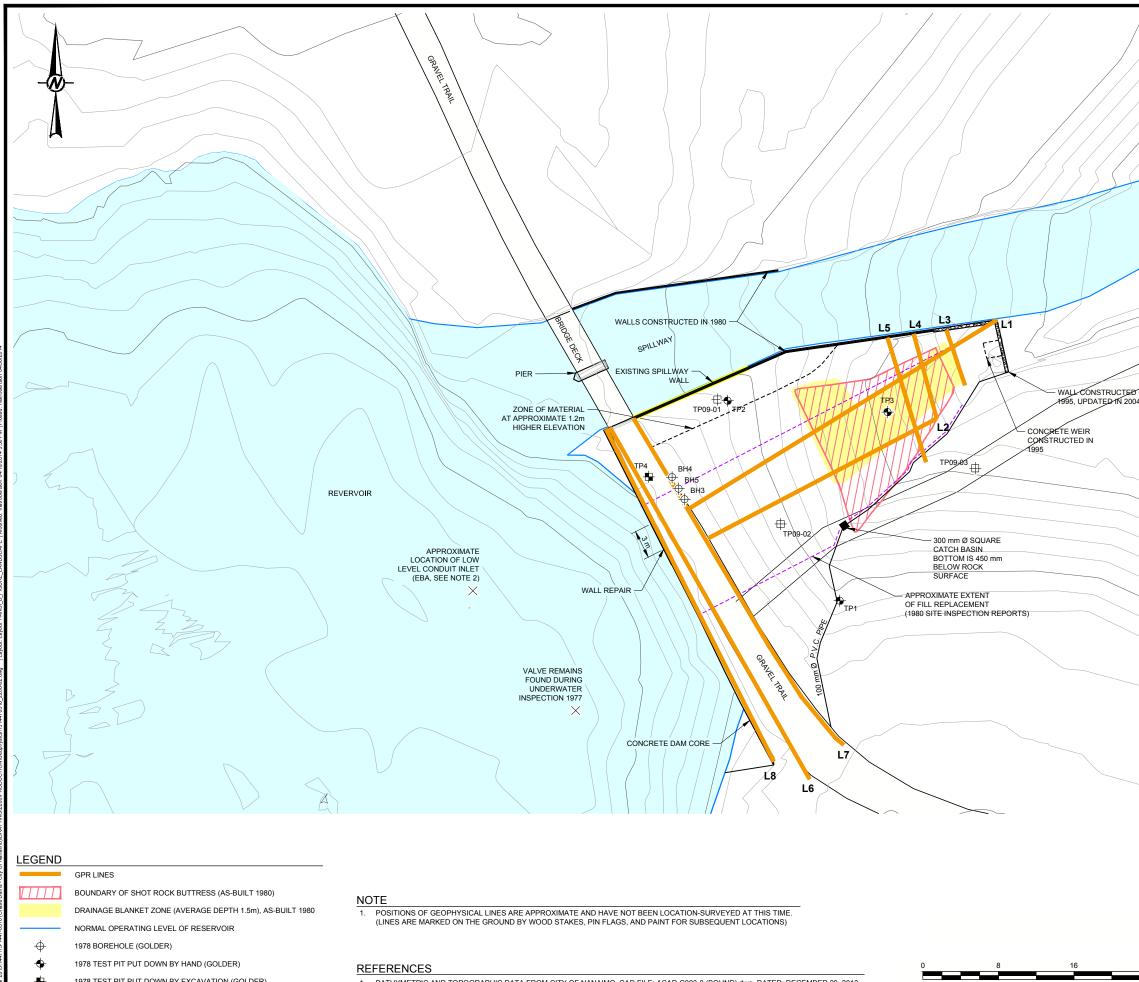
LEGEND

GPR LINES

SEISMIC LINE (DASHED TO OFF-END SHOT POINTS)

- NORMAL OPERATING LEVEL OF RESERVOIR
- 1978 BOREHOLE (GOLDER) \oplus
- 1978 TEST PIT PUT DOWN BY HAND (GOLDER) +
- 1978 TEST PIT PUT DOWN BY EXCAVATION (GOLDER) -
- 2009 TEST PIT (EBA) ₽

REFERENCES


NOTE

- BATHYMETRIC AND TOPOGRAPHIC DATA FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, DATED: DECEMBER 20, 2013. WILLIS CUNLIFFE TAIT & COMPANY LTD., PDF FILE: Appendix C 1980 Repairs As-builts.pdf, DATED: JULY 1978. SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS, N 13101249, APRIL 14, 2014. (EBA 2010) 1.
- 3.

1. POSITIONS OF GEOPHYSICAL LINES ARE APPROXIMATE AND HAVE NOT BEEN LOCATION-SURVEYED AT THIS TIME. (LINES ARE MARKED ON THE GROUND BY WOOD STAKES, PIN FLAGS, AND PAINT FOR SUBSEQUENT LOCATION).

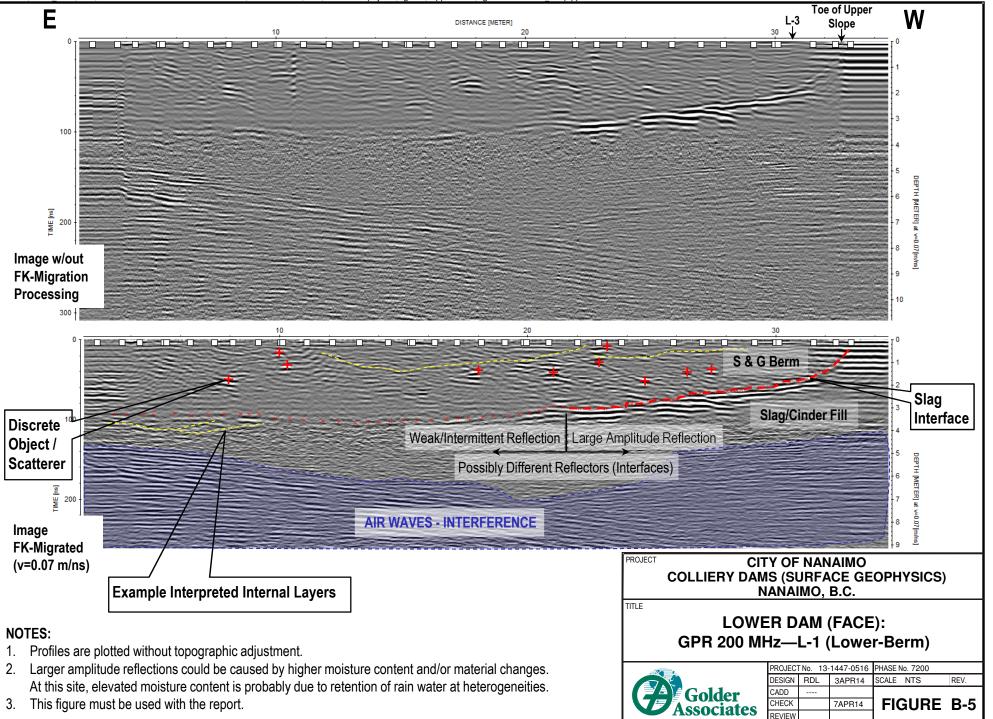
SCALE

///	/ /	///		/			/	
			\leq					\sum
		$\langle \rangle$			/			\sum
/ / / /				\sim				\searrow
								$\left\langle \right\rangle$
)///				_	\backslash			
			Æ	\leq				
			\mathbb{Z}	$\left(\right)$		\square		
) 		$\langle \rangle$	$ \setminus \langle$	$\langle \rangle$		*	
			$\langle \rangle \rangle$	/ / /	$\setminus \setminus \langle$			
L1			$\langle \rangle \rangle$	()))	$\langle \rangle \rangle$			
		$\langle \rangle$	/ / /	$\langle \rangle \rangle \rangle$			\bigcap	
		$\langle \gamma \rangle$		$\left(\left(\left$	}///			
	//	$ \setminus $ /	{ / .		// [
		$\langle \rangle \rangle /$	/// (1/1	$\frac{1}{1}$		
\sim			$\langle \rangle$	(151		5	2
_ \		/ / \		1117	175,			
		/ ()	///	$\left(\left(\right) \right)$	$\langle \rangle \rangle$			
		$\langle \langle \rangle \rangle$		$\left(1 \right)$			$\overline{\}$	
~					$\left(\left \right \right)$		> /	
			7777			/		
		$\langle \langle \rangle \rangle \rangle$	$\left\{ \left\{ \left$))))//	/////			
	ζ	>		JJK				
	\rangle 1			///	24			
] //////	$\langle \rangle \rangle \rangle$	$\langle \rangle \rangle$		5	5
			1121	$\langle \rangle \rangle \rangle$			{	Ĺ
	H		Y//	$\langle \rangle \rangle \rangle$		\sim	<u>∕</u>	
				\langle / \rangle		ZV (ι
	_	~ (\) [[]			\mathcal{M}	NU	\sum	
7 /	7 /		$\left(\left V_{1} \right\rangle \right)$	$\rangle $		$ \rangle$	$\rangle\rangle\rangle\rangle$	Ĺ
		////	$\langle \bigvee \rangle$	<u>}</u>)///		}///	//	
]//(/////				\sim
	177	7///		$\sqrt{2}$	$M(\langle \langle \rangle$		\leq	
/) .	7 / / /	/ / /		$\left\{ \left \right\rangle \right\}$	11/11]].
ł	2014-04-30 REV DATE	IS	SUED WITH FAC			R.L. DES		
Ī	PROJECT)f nai Iery i				
			NAN	AIMO,	B.C.			
·			GEO	PHY	SICS	000		
	50	RFACE IN		IIGA VER [DAM		TIONS	
36			PROJECT N DESIGN	o. 13-144 R.L.	2014-04-09	FILE No.	1314470516 AS	_2200-01
		Calden			2014-04-09	FIGURE		2
		GUIGET	CADD CHECK	M.R. R.L.	2014-04-10	TIGONE	B-3	

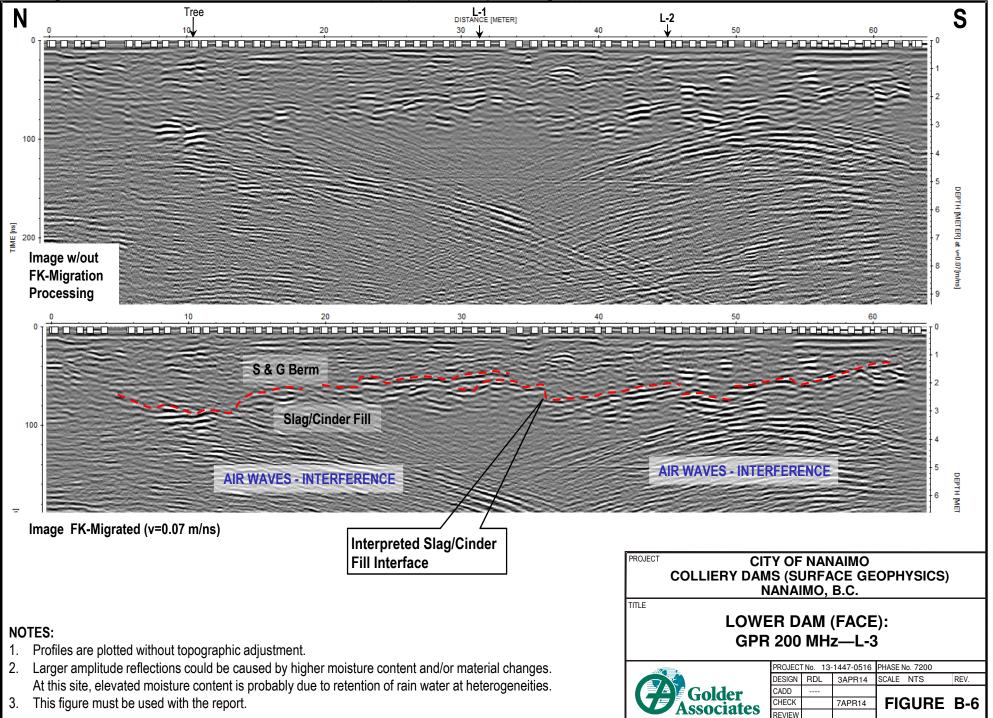
1978 TEST PIT PUT DOWN BY EXCAVATION (GOLDER) 2009 TEST PIT (EBA)

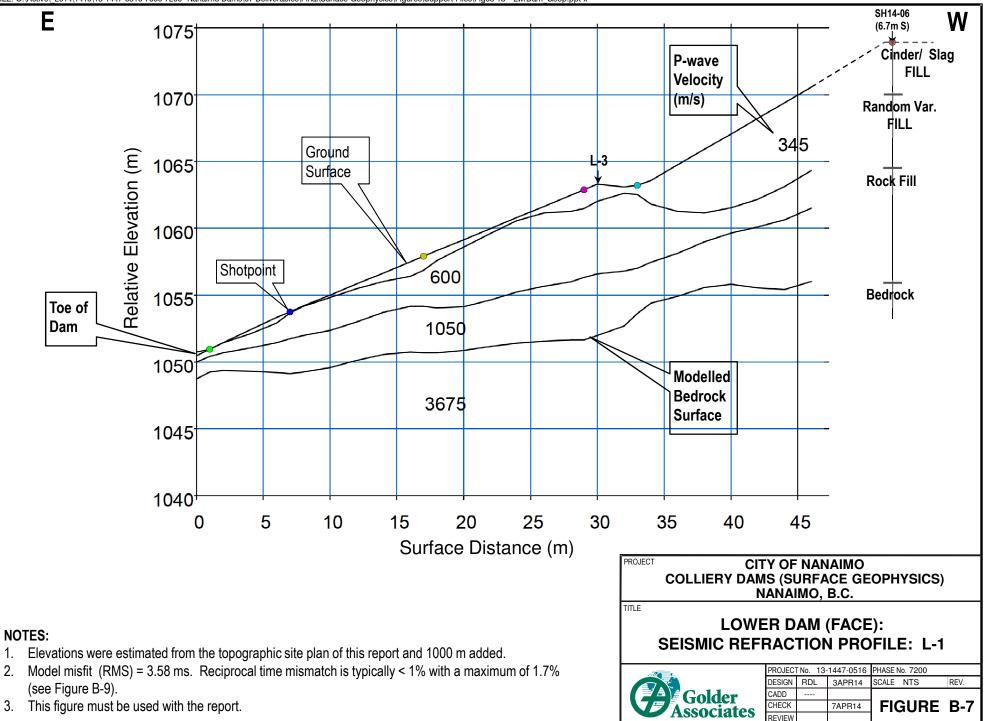
₽

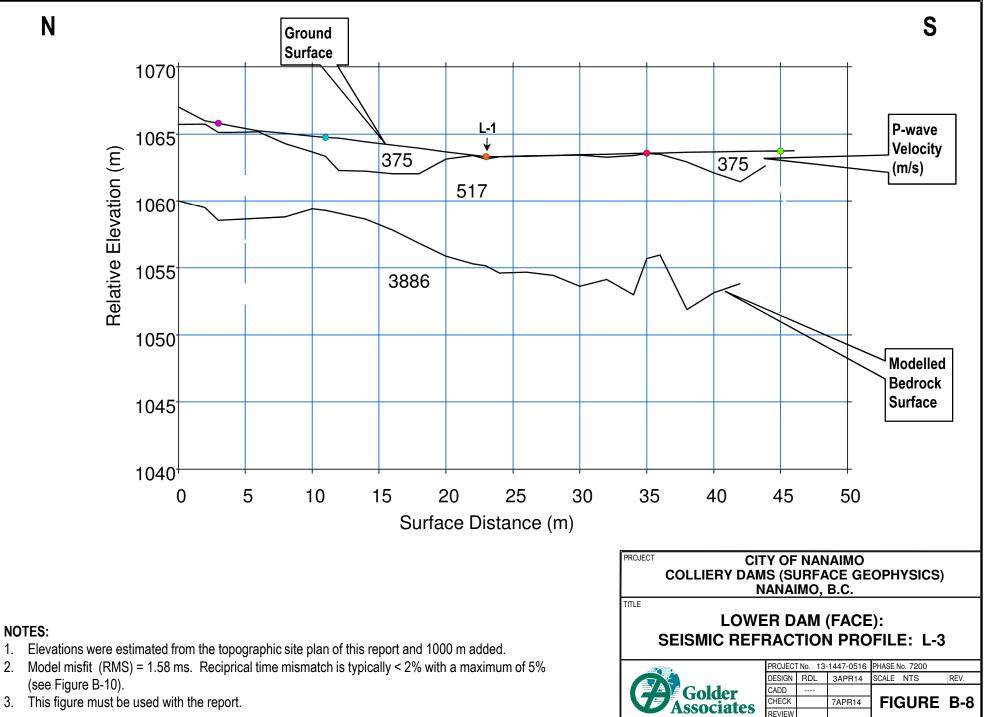
 \oplus

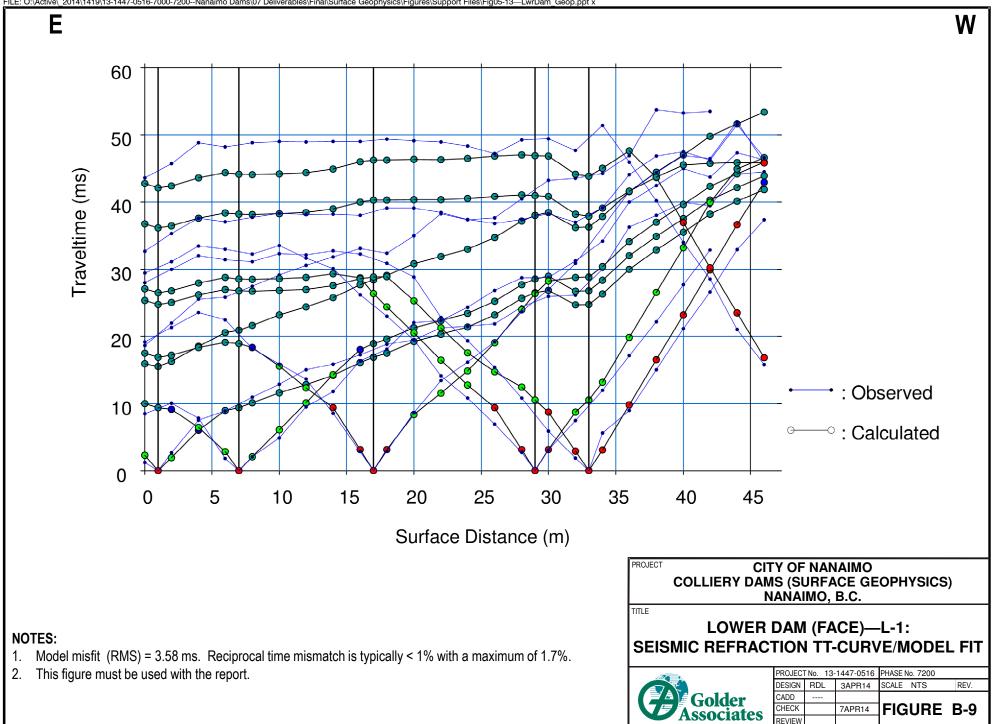

BATHYMETRIC AND TOPOGRAPHIC DATA FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, DATED: DECEMBER 20, 2013. WILLIS CUNLIFFE TAIT & COMPANY LTD., PDF FILE: Appendix C - 1980 Repairs As-builts.pdf, DATED: JULY 1978. SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS, N 13101249, APRIL 14, 2014. (EBA 2010) 1.

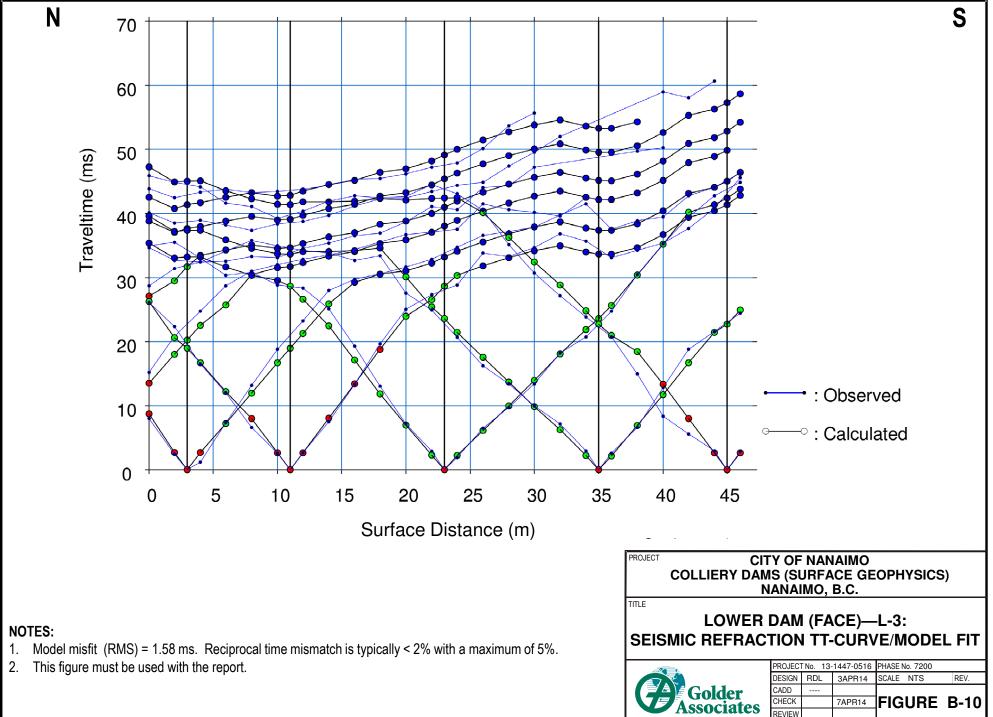
SCALE

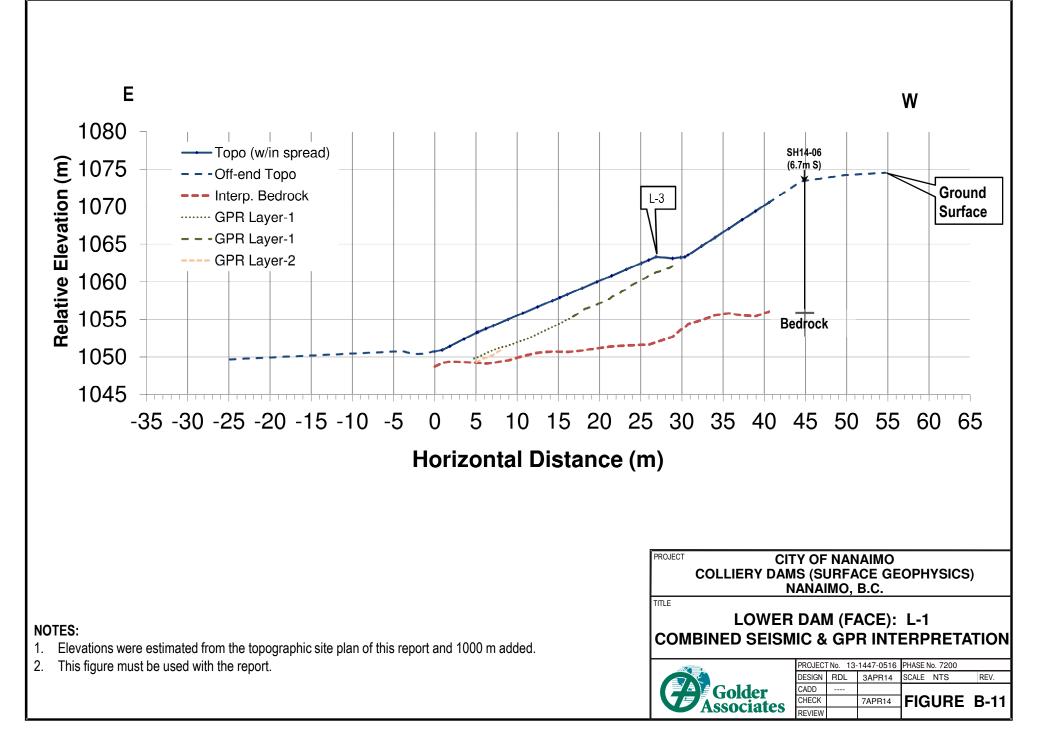

3.

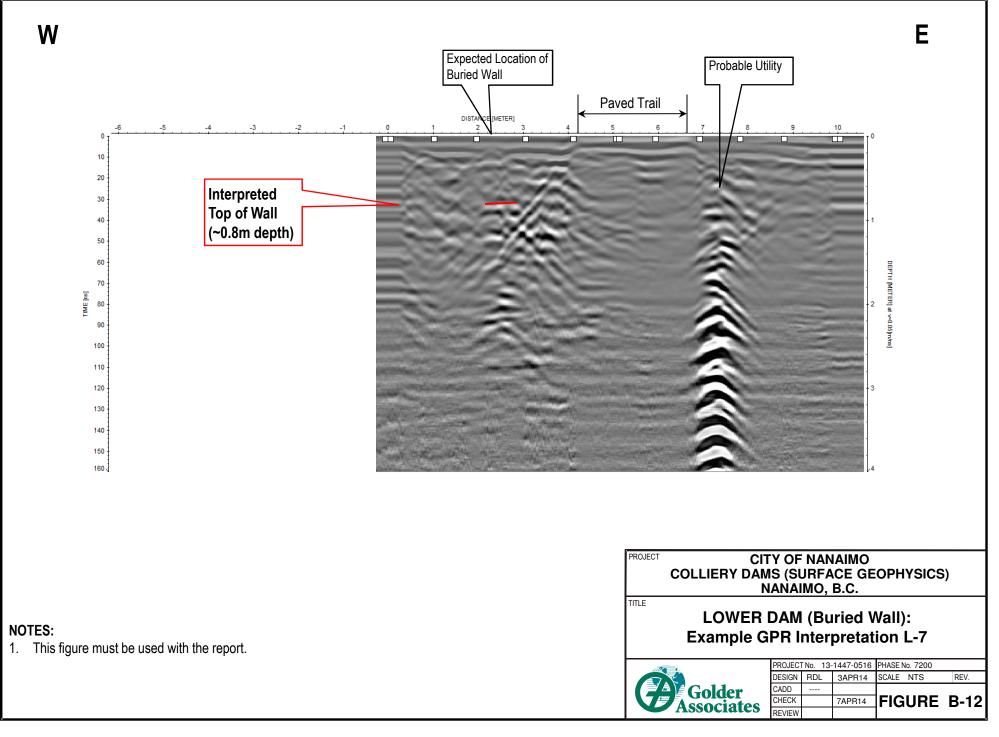

/ / / / / / / / / / / / / / / /	/			7	<u> </u>		. /
							,
		•		• \	\sim		-
				``	٦ []		
						\searrow	
					\cdot	Le 1	
						\square	
						/	$\langle $
					_		-
							٧
					\sim		
	>						_
\langle							
IN 4							
		,			,		
					(_
				/			
		/	/				
\bigcirc		/	/ /				
							_
							_
			\square	\square	\sim	\sim	
						/	
	\sim				/ _		
	/						
	55	\leq					
	\sim			~~~~			_
					/		
			2				
						/	
A 2014-04-30 ISS	SUED WITH FACT			R.L.	M.R.	R.L. M	I.M.
REV DATE	REVISION DES	CRIPTION		DES			vw
PROJECT							
	COLLI NAN/	AIMO,	B.C.				
TITLE							
SURFACE IN	IVEST	FIGA	FION I			NS	
	MID	DLE	DAM				
24	PROJECT No	o. 13-144	7-0516/7100	FILE No.		0516_2200	
Golder	DESIGN CADD	R.L. M.R.	2014-04-09 2014-04-10	SCALE FIGURE		AS SHO	WN
Associates	CHECK	R.L.	2014-04-30		B-4		

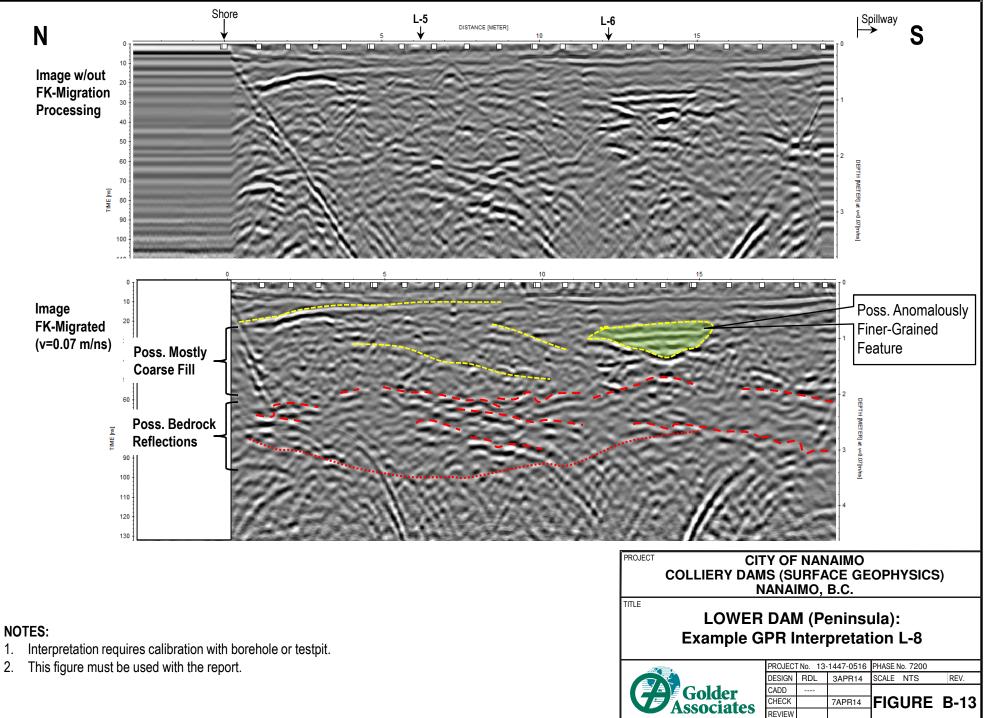

FILE: 0:\Active_2014\1419\13-1447-0516-7000-7200--Nanaimo Dams\07 Deliverables\Final\Surface Geophysics\Figures\Support Files\Fig05-13-LwrDam_Geop.ppt x

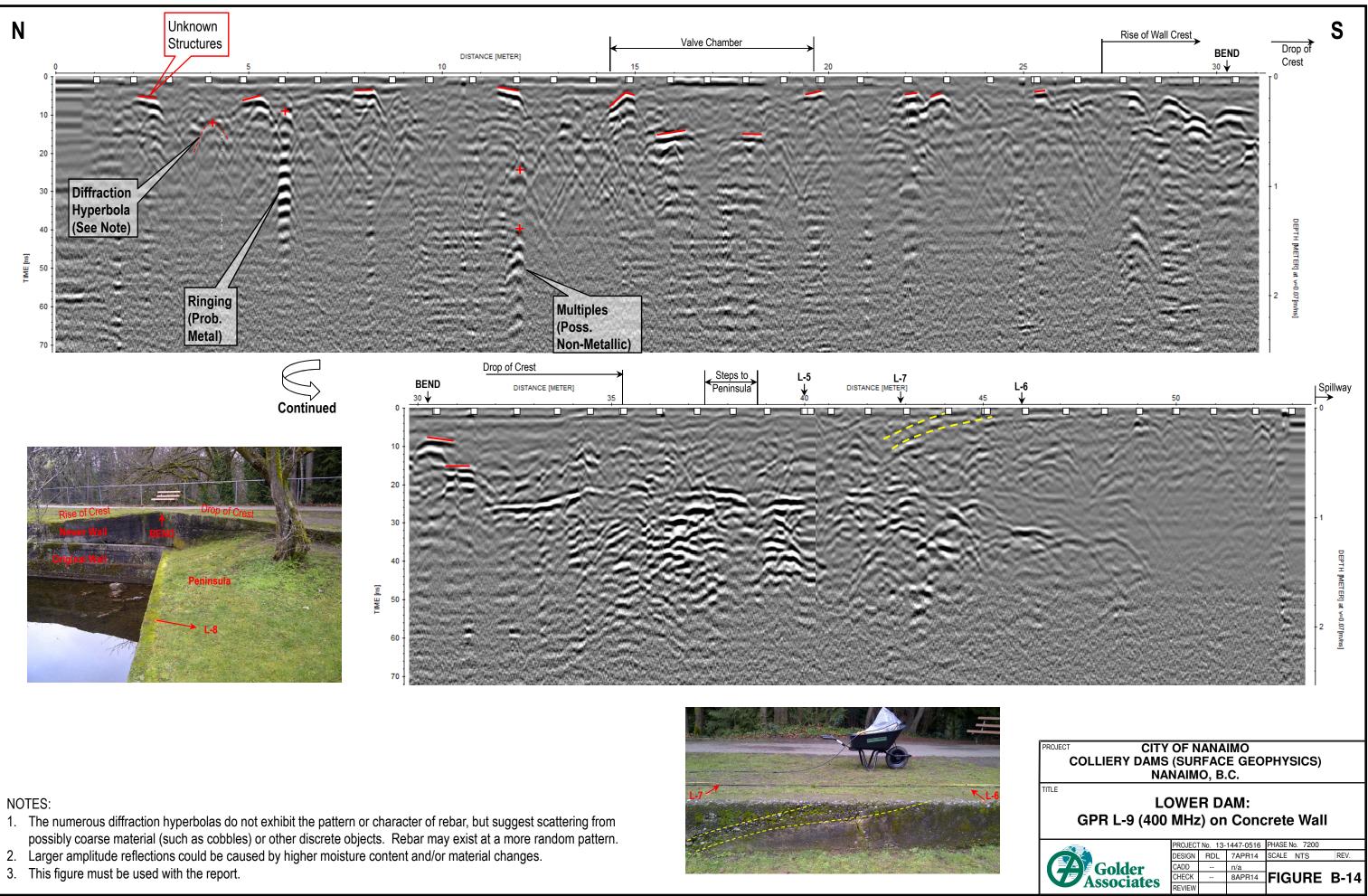


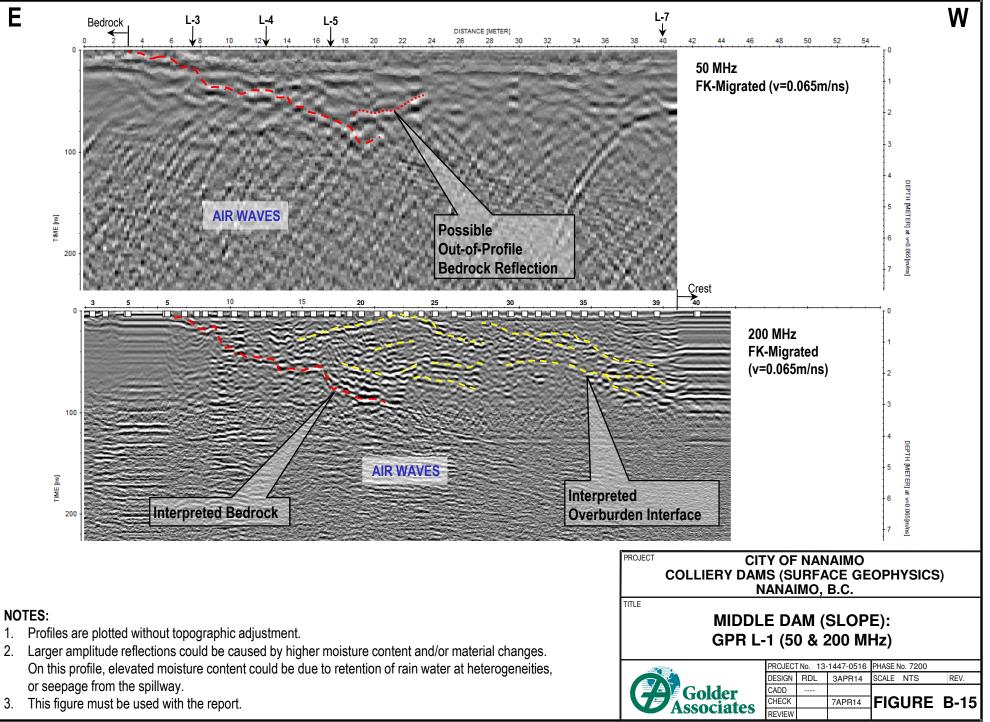

FILE: O:\Active_2014\1419\13-1447-0516-7000-7200--Nanaimo Dams\07 Deliverables\Final\Surface Geophysics\Figures\Support Files\Fig05-13-LwrDam_Geop.ppt x

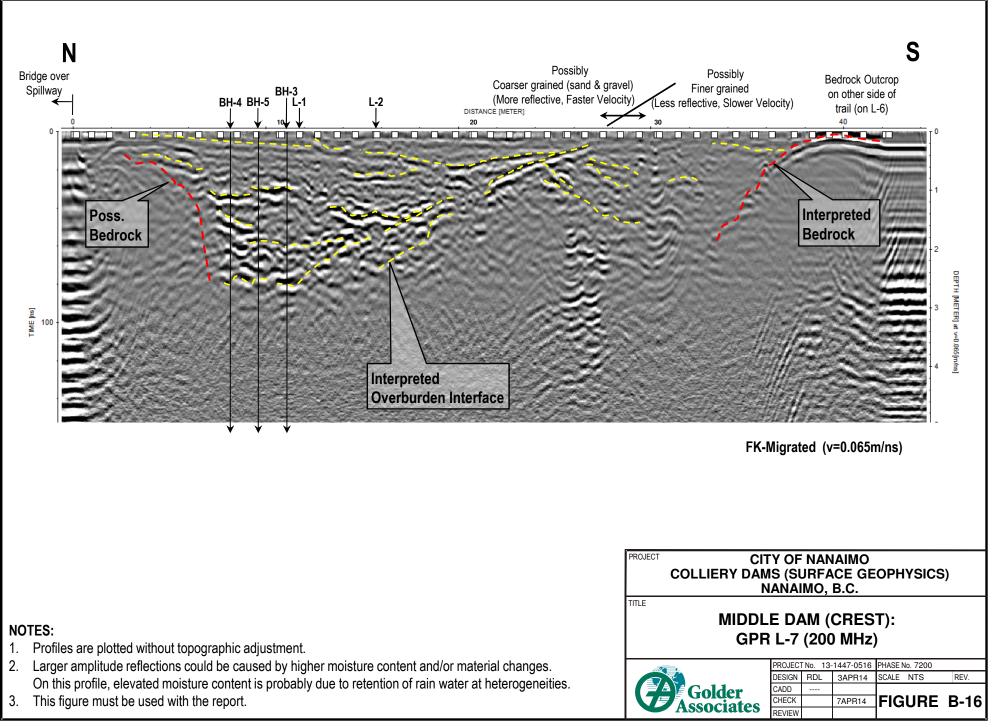


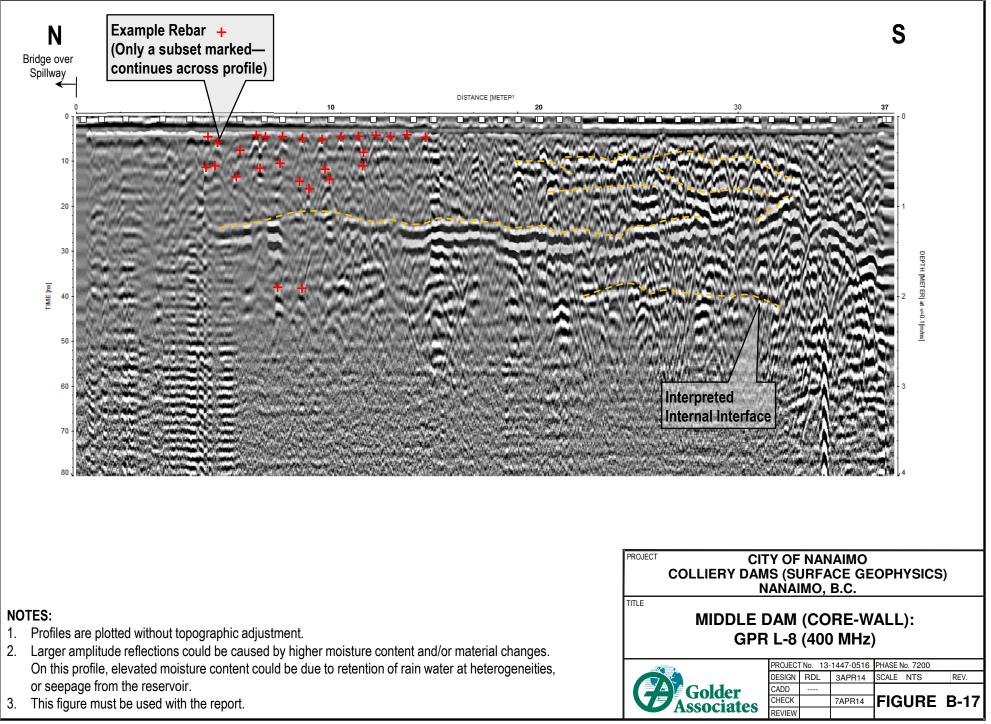









FILE: O:\Active_2014\1419\13-1447-0516-7000-7200--Nanaimo Dams\07 Deliverables\Final\Surface Geophysics\Figures\Support Files\Fig05-13-LwrDam_Geop.ppt x



FILE: O:\Active_2014\1419\13-1447-0516-7000-7200--Nanaimo Dams\07 Deliverables\Final\Surface Geophysics\Figures\Support Files\Fig15-17—MidDam_Geop.ppt x

FILE: O:\Active_2014\1419\13-1447-0516-7000-7200--Nanaimo Dams\07 Deliverables\Final\Surface Geophysics\Figures\Support Files\Fig15-17---MidDam_Geop.ppt x

Annex B Summary of Corehole Geophysics of Lower Dam

DATE April 16, 2014

REFERENCE No. 1314470516-003-TM-Rev0-7000

- TO Jenna Girdner Golder Associates Ltd.
- CC Max Maxwell

FROM Christian Sampaleanu

EMAIL csampaleanu@golder.com

SUMMARY OF COREHOLE GEOPHYSICS AT COLLIERY DAM, NANAIMO, BC

This technical memo provides preliminary results from borehole geophysical surveys that were carried out in the two coreholes that were cored through the concrete wall (top to bottom) of the Lower Colliery Dam.

1.0 OBJECTIVE

Objectives of this survey were to obtain:

- Detailed in-situ imagery of the corehole walls using optical and acoustic televiewers, primarily in support of subsequent packer testing;
- Confirmation of rebar within the concrete wall (existence and possible variation of occurrence) using borehole ground penetrating radar (GPR) with supporting evidence from televiewer magnetometers and images;
- Estimates on variations in wall thickness (from borehole GPR) ; and
- Possible other information that could be inferred from the geophysical data set.

These borehole geophysical results are part of a more comprehensive geotechnical investigation, and cannot be viewed in isolation from that context.

2.0 SCOPE OF WORK

The original scope of work was for geophysical logging in two coreholes, CH14-02 and CH14-03. All boreholes were logged with a combined 3-arm caliper/fluid temperature resistivity probe, and optical and acoustic televiewers. Additionally, GPR profiles were collected in each corehole using a 100 MHz borehole GPR antenna.

3.0 METHODOLOGY

Golder methodology of televiewer logging investigation is typically as a suite of three complimentary logs: caliper, optical televiewer, and acoustic televiewer, all collected using a digital borehole logging system. Borehole GPR data is collected using a separate system. The individual components are discussed below.

3.1 Borehole Logging System

The borehole geophysical logging system used for this work includes a winch, data logger and electronics interface, software, and slimhole probes described below. These were manufactured by Mount Sopris Instruments and Advanced Logic Technology (ALT). The logging system uses a digital controller to provide wireline communications with downhole probes for power and data telemetry. Depth is tracked by using a high-resolution optical encoder mounted on the wire line at the winch. Data were recorded on a laptop computer and displayed in real time, allowing a visual assessment of data quality during the survey.

3.2 Caliper

Borehole diameter caliper measurements are performed by three spring-loaded arms that interact with pot resistors in the probe. Prior to logging operations, the caliper probe is calibrated against rings of known diameter. Changes in borehole diameter (either greater than or smaller than the known bit-size) may be indicative of unstable zones due to large joints, faults and vugs, or soft formations such as shale, coal or mudstone. This information is useful in interpreting televiewer data as well as useful in identifying potential wash-out, cave-in or hole-restriction zones, before sending the televiewers down the hole.

3.3 Borehole Televiewers

The acoustic televiewer (ATV) and optical televiewer (OTV) are designed to obtain images of the borehole wall. The OTV is a high resolution digital camera obtaining detailed colour imagery of the borehole rock and can be used for geological interpretation in addition to geotechnical. The ATV obtains acoustic imagery, using a sound source and a receiver to collect travel time and amplitude data from the borehole walls. Data are collected by a spinning transducer, at a radial sampling of 144 points per rotation and 360 points per rotation for the ATV and OTV respectively. The ATV and OTV logs were collected with a vertical sampling of 1.8 mm and 1.3 mm respectively.

Typically, data recorded by both televiewers are displayed as images that are oriented using data recorded by a three-component fluxgate magnetometer and a three-component tilt meter incorporated in the tools. In this case the images are plotted without orientation, since the coreholes are vertical and magnetic interference occurs from the casing and from the regular occurrence of rebar (at least in CH14-02).

Planar features intersecting the borehole wall appear as sinusoidal traces in the "unwrapped" televiewer image. Using the reference direction recorded during logging, sinusoids can be analyzed to estimate dips and dip directions of categorized features; however, orientation is not an objective of this investigation.

3.4 Borehole GPR

Ground penetrating radar (GPR) operates on the principle that electromagnetic waves, emitted into the ground by a transmitter (Tx) antenna, are partially reflected at subsurface interfaces and can be detected by a receiver (Rx) antenna. In this survey, a single probe contained both the transmitter and receiver antennas. Reflections arise due to contrasts in the dielectric constant of subsurface materials, due primarily to variations in soil moisture content. In particular, there is a strong reflectivity contrast between porous, partially saturated soils and relatively impervious crystalline bedrock or most utilities and buried metal such as rebar. Radar range or maximum penetration is controlled by the electrical conductivity of subsurface materials; as conductivity increases, intrinsic attenuation increases, reducing the effective radar sounding range. Conductivity is typically enhanced with increasing moisture content, depending on the concentration of dissolved salts and the fraction of clay minerals present.

The GSSI SIR-2 radar system used here incorporates precise timing electronics to measure the reflection transit-time, from transmitter to receiver, which depends on reflector range and radar signal velocity. A borehole radar profile is acquired by moving the antennas up the borehole as the radar system records a series of scans at equal time intervals (in this case, sixteen times per second). Resulting data are displayed as a series of oscilloscope-like traces having amplitude proportional to reflection strength. Given an estimate of radar velocity, which can be measured from GPR profiles, corresponding reflector depths may be determined. The particular borehole radar antenna used is omni-directional, meaning signals are sent out in and received from all directions, and thus locating a particular feature is not possible from a single borehole GPR profile.

The 100 MHz borehole antenna was lowered and raised on its cable by hand. The cable is marked at 1 m intervals. These marks serve to determine depth and corresponding marks were made on the GPR profiles to indicate the depth of the antenna in the corehole.

4.0 FIELD WORK

Corehole geophysical logging was conducted on March 25-26, 2014. Multiple GPR profiles were collected in each corehole, each time varying a signal processing parameter such as gain, filters or background removal. All logs and GPR profiles were collected from the bottom of the hole upwards to facilitate smooth data collection. The top of the acoustic televiewer logging interval corresponds to the static water level (SWL), and as such, acoustic televiewer data was not collected in the upper 8 m of CH14-03. Table 1 provides a summary of coverage for the coreholes logged in this investigation.

Hole	Total depth of hole (m)	Top of logging interval (m below ground surface)	Bottom of logging interval (m below ground surface)	Comments
CH14-02	20.4	1.2 (OTV) 2.15 (ATV) - SWL	20.4	Poor fluid clarity impaired optical log
CH14-03	13.0	1.9 (OTV) 8.68 (ATV) - SWL	12.9	

 Table 1: Summary of Log Coverage

5.0 **RESULTS AND INTERPRETATION**

5.1 Televiewer Logs

Televiewer data processing and interpretation was performed using ALT WellCAD (v 4.4) software. Acoustic and optical televiewer logs are presented, along with the caliper log, apparent hardness log (calculated from the median acoustic amplitude), corehole orientation logs (tilt and azimuth), as well as the magnetic field log (which indicates any magnetic disturbances due to metal objects such as rebar). The metal casing in each hole greatly affects the top few metres of the magnetometer and azimuth logs.

Note that the borehole log depth scale is relative to ground surface.

5.2 Apparent Hardness Log

The apparent hardness log is derived from the acoustic televiewer amplitude log. The amplitude log represents the magnitude of the returned reflected signal; the harder and more competent the wall, the larger the amplitude of the returned signal. This magnitude is primarily dependent on the impedance contrast between the borehole fluid and formation.

WellCAD software was used to extract a median amplitude log from the amplitude image log (this provides a single median amplitude value for each depth slice, i.e., the median of the 144 points recorded around each 1.8 mm thick depth slice). This "median amplitude" log is the basis of Apparent Hardness. The Apparent Hardness log is typically produced by dividing the median amplitude log by a normalizing factor. This factor can change as more data becomes available from the site; the idea is to develop a site normalizing factor, or to normalize to a known response from a particular calibration or test borehole. In the investigation reported here, the log was scaled to a normalizing factor of 1500—the maximum amplitude measured within the steel casing from other sites.

The resulting Apparent Hardness log resembles a bedrock stratigraphic weathering profile. The Apparent Hardness log usually tracks well with Geotechnical Indices, such as RQD, TCR, SCR and FI. If a rock is heavily fractured, soft or washed out by the drilling process, the Apparent Rock Hardness will be lower. It should be noted that Geotechnical Indices are measurements made on a disturbed sample and the Apparent Rock Hardness log is an estimate from an *in situ* measurement of the borehole wall conditions.

This method of calculating an Apparent Hardness log from the acoustic televiewer log can be affected by several factors: 1) drilling induced fracturing, 2) decentralization of the tool during logging, and 3) geologic conditions such as the presence of gypsum layers or veins.

5.2.1 CH14-02

The acoustic televiewer amplitude log of CH14-02 shows variations in the concrete including layering and possible cold joints, clast size and shape, and proportion of aggregate/cement. Relative variations in hardness (primarily of the cement) are also apparent. The cement produces a brighter acoustic reflection as it increases in hardness with depth. Zones of softer cement are present at several depths. The thickness of these zones ranges from 1 cm to 15 cm. The caliper log shows a widening of the borehole, from the normal 12.7 cm to 13.7 cm, occurring between 6.7 m and 7.3 m depth. This zone causes the acoustic televiewer log to blur as the tool loses centralization at this interval.

Bedrock appears to occur at approximately 18.45 m depth below ground surface. The conglomerate bedrock appears to consist of finer, and more rounded, aggregate and harder matrix. At least three discrete fractures are visible in the bedrock – one at the interface at 18.45 m, one at 19.1 m, and a very fine crack at 19.3 m.

The optical televiewer log is mostly obscured by the poor clarity of the borehole fluid, particularly above 15 m. Below 15 m the OTV log also exhibits the bedrock interface, with the concrete being a lighter colour than the bedrock.

Both acoustic and optical televiewers measured several magnetic anomalies in this hole, indicating the presence of metal, most likely rebar. A total of 14 anomalies were identified; the shallowest at 10.8 m depth, with subsequent anomalies spaced at 0.26 m to 0.98 m from the one above it. The magnitude of these anomalies varies suggesting a variation in horizontal distance from the borehole. More subtle variations in magnetic field were not considered to be anomalies, and it is possible that some weak anomalies were not noted or were masked by stronger ones.

Note that three magnetic anomalies occur at or below the bedrock interface. These occurrences suggest continuation of reinforced concrete to at least 19.05 m depth some metres away from the borehole (within the range of the magnetometer).

Due to these magnetic anomalies distorting north-oriented televiewer logs, the logs for this hole are oriented to an arbitrary marker on the tool itself.

5.2.2 CH14-03

Acoustic and optical televiewer logs for CH14-03 show a similar structure to that observed in CH14-02. Light-coloured coarse aggregate concrete overlies darker (greenish-grey), finer aggregate conglomerate bedrock. The bedrock interface occurs at approximately 9.9 m below ground surface. Two significant fractures are visible in both logs within the bedrock: one at 10.65 m, and one at 11.65 m. Variations in the hardness of the cement are not as apparent compared to CH14-02, although no acoustic log is available above 8.7 m due to a lack of water in the corehole.

While some subtle variations in magnetic field are observed, there are no strong anomalies that would suggest rebar adjacent to the corehole. However, it is worth noting that the bottom of this hole, at 12.9 m is above most of the anomalies observed in CH14-02.

Televiewer logs for corehole CH14-03 are oriented to magnetic north based on the televiewers' onboard magnetometers.

5.3 Borehole GPR Results

GPR data were processed using the Reflex-W reflection processing software. Data processing included:

- Dewow Filter (8-12 ns moving average filter);
- Band pass filter (50-300 MHz);
- Background Removal Filter; and
- Gain (Energy Decay gain).

Resulting GPR data are generally noisy and do not provide a clear interpretation of thickness of the concrete wall, however, features are visible which are a typical response for rebar. Some of the difficulty in interpretation arises from the fact that the borehole antenna is omni-directional, and so it is not possible to determine the precise location or orientation of features. For example, a series of diffractions interpreted to be rebar could, in fact, be two sets of rebar, one on each side of the borehole.

GPR profiles from either borehole do not exhibit interpretable reflections from the concrete wall interfaces. There could be several reasons for this. One is that the highly reflective rebar masks other more subtle reflections. It is also possible that the difference in radar properties between the concrete and fill materials is insufficient to reflect enough energy back towards the antenna.

5.3.1 CH14-02

Most GPR profiles collected in CH14-02 exhibit a notable (regular) pattern of diffraction hyperbolas across the profile, occurring from approximately 2 m to 17.5 m below ground surface. These diffractions are spaced at intervals of approximately 40-80 cm and are characteristic of rebar. The spacing of these diffractions is slightly denser than the magnetic anomalies in the televiewer logs, although the range of rebar detection of GPR appears to be greater than that of the televiewer magnetometer. The diffraction pattern does not appear below approximately 18 m depth, which is the bedrock interface.

5.3.2 CH14-03

The GPR profiles collected in CH14-03 exhibit some notable features. At least two sets of diffraction patterns are visible which could be interpreted to be rebar. These diffractions vary in range from the corehole and in reflection strength. The first set is most apparent between 3.5 to 8 m depth below ground surface, and again within the bottom 1 m of the borehole. The diffractions appear at semi-regular intervals of approximately 25-35 cm.

The second diffraction pattern is less regular and distinct than the first one, and appears to range further away from the borehole with depth.

6.0 SUMMARY AND CONCLUSIONS

The borehole televiewer and GPR investigation reported here has confirmed the presence of rebar throughout the dam, as well as identified fractures in the bedrock and provided an in-situ characterization of the concrete in support of the geotechnical core logs and other geotechnical information.

Rebar was interpreted in both the GPR data and in magnetometer data from the borehole televiewers and to a lesser extent visually observed in the televiewer images at intervals that are consistent with the geotechnical log. Rebar appears more frequently in GPR profiles, due to the higher resolution and greater range of the radar survey.

In CH14-02, diffraction hyperbolas interpreted to be rebar were observed in the GPR profile from 2 m to 18 m below ground surface. In the televiewer data, magnetic anomalies indicative of rebar are observed from 10.8 m to the bottom of the corehole. In both cases, rebar appears to be spaced at semi-regular intervals; usually less than 1 m in the magnetometer log, and less than 0.5 m in the GPR profile.

In CH14-03, similar series of diffraction hyperbolas were observed in the GPR profile through most of the corehole, varying in intensity and range from the corehole. No evidence of rebar was seen in the televiewer image or magnetometer logs.

The GPR data were not able to characterize the thickness of the concrete wall or image the interface between concrete and fill.

7.0 CLOSURE

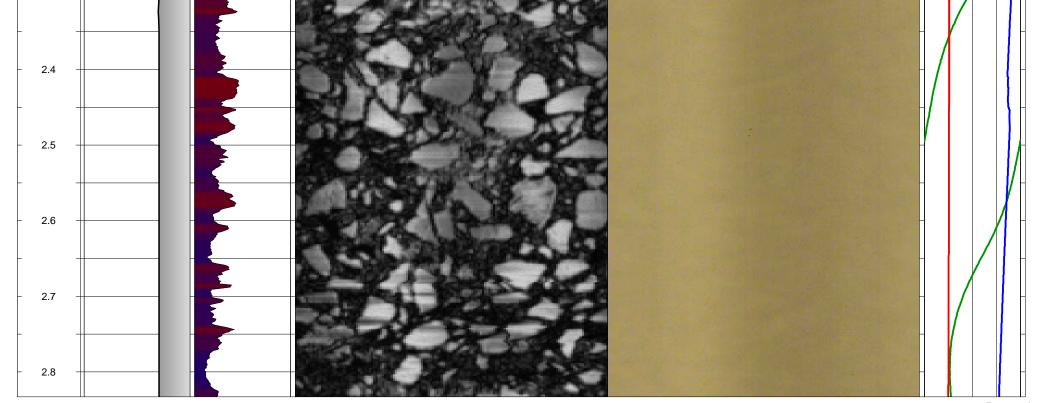
This memorandum has been prepared based on the information obtained for the purposes outlined above. Should additional site investigation data become available, Golder Associates should be requested to review this report in light of this information, and provide revised and/or additional recommendations as appropriate.

We trust that this report meets your immediate requirements. Please contact the undersigned should you have any questions or concerns.

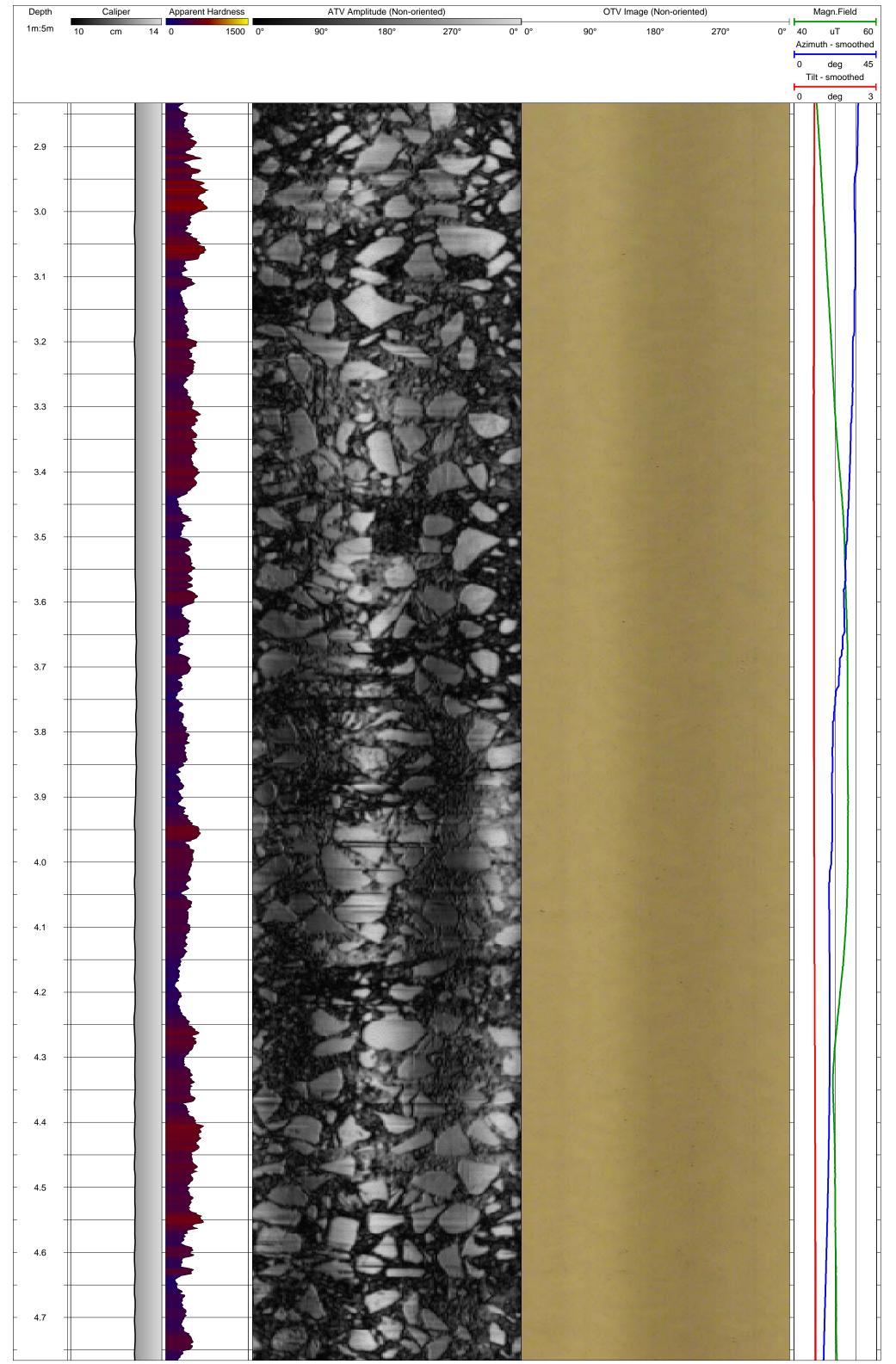
GOLDER ASSOCIATES LTD.

Christian Sampaleanu, B.Sc. Geophysicist

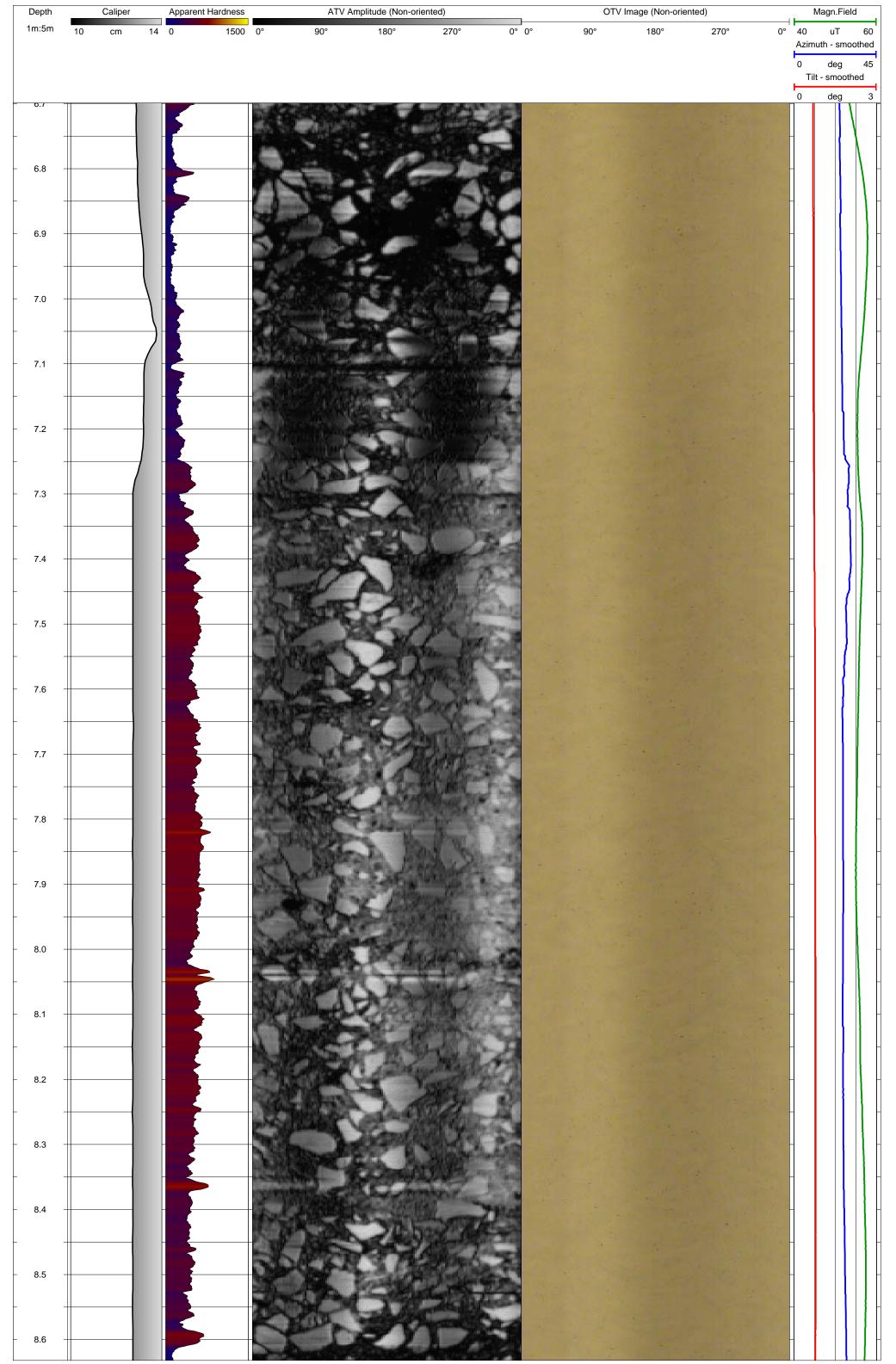
CIS/RDL/ja/jlj

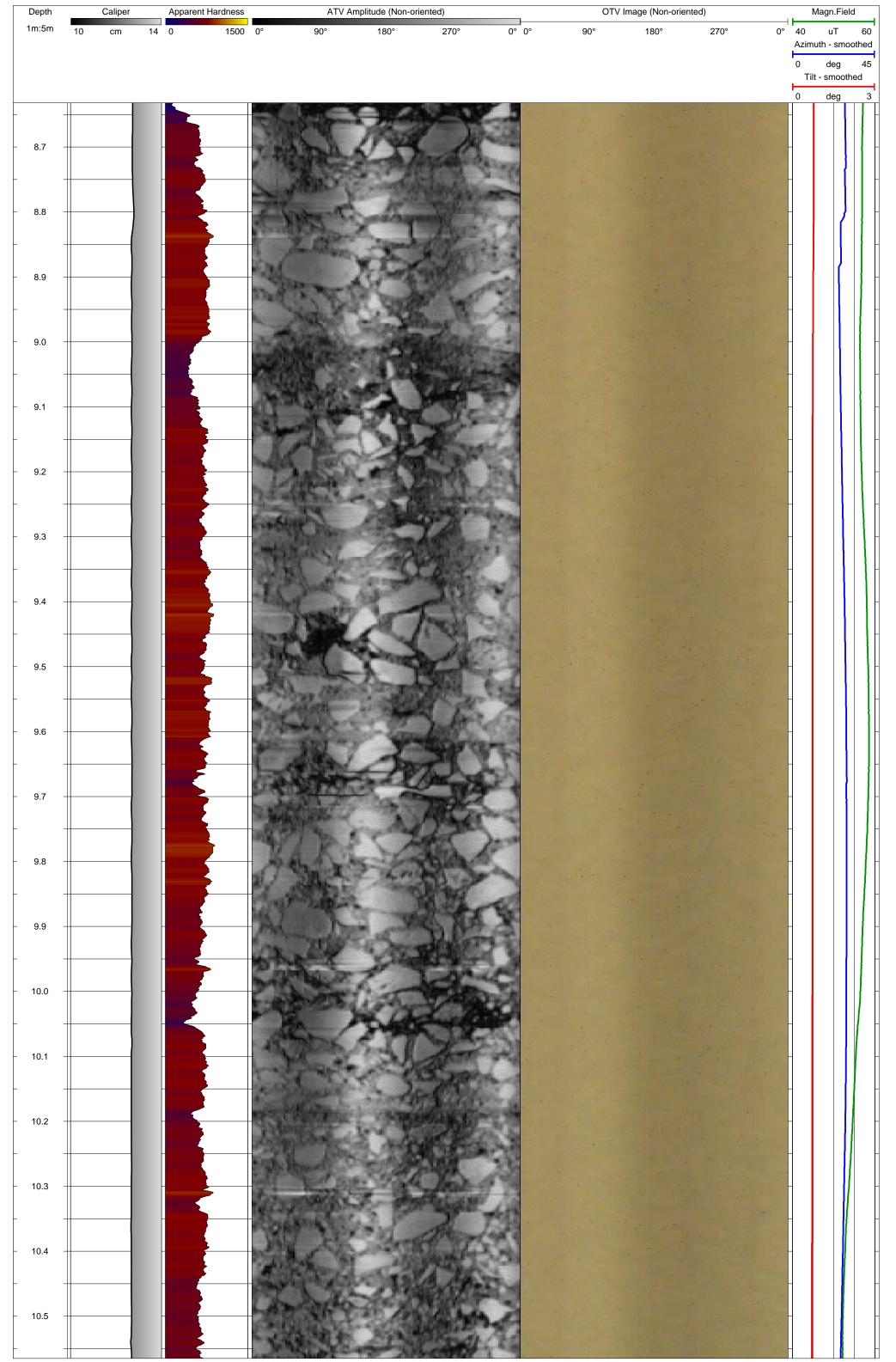

Attachment 1: Televiewer Logs

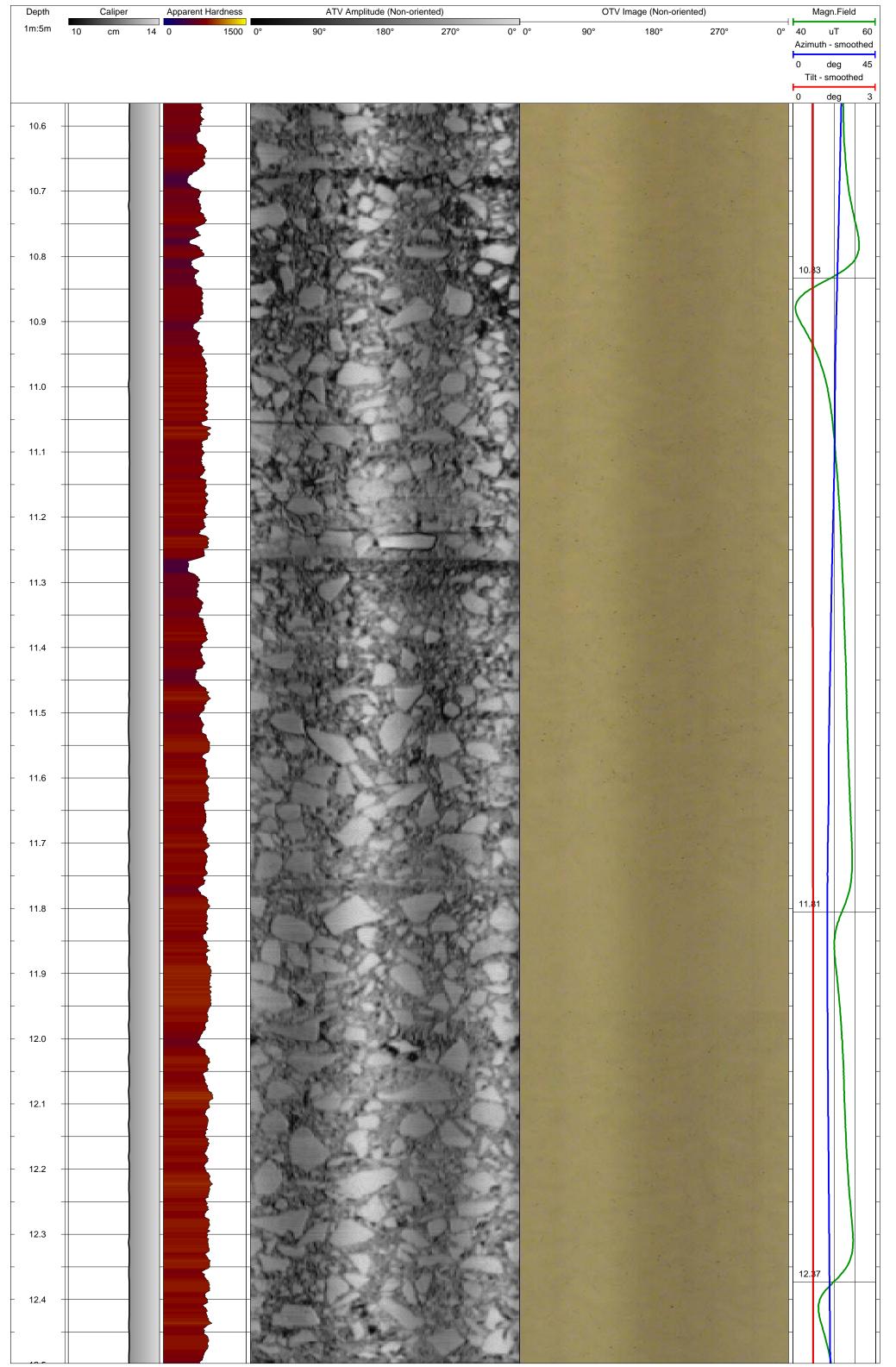
Rob Luzitano, M.Sc. Senior Geophysicist

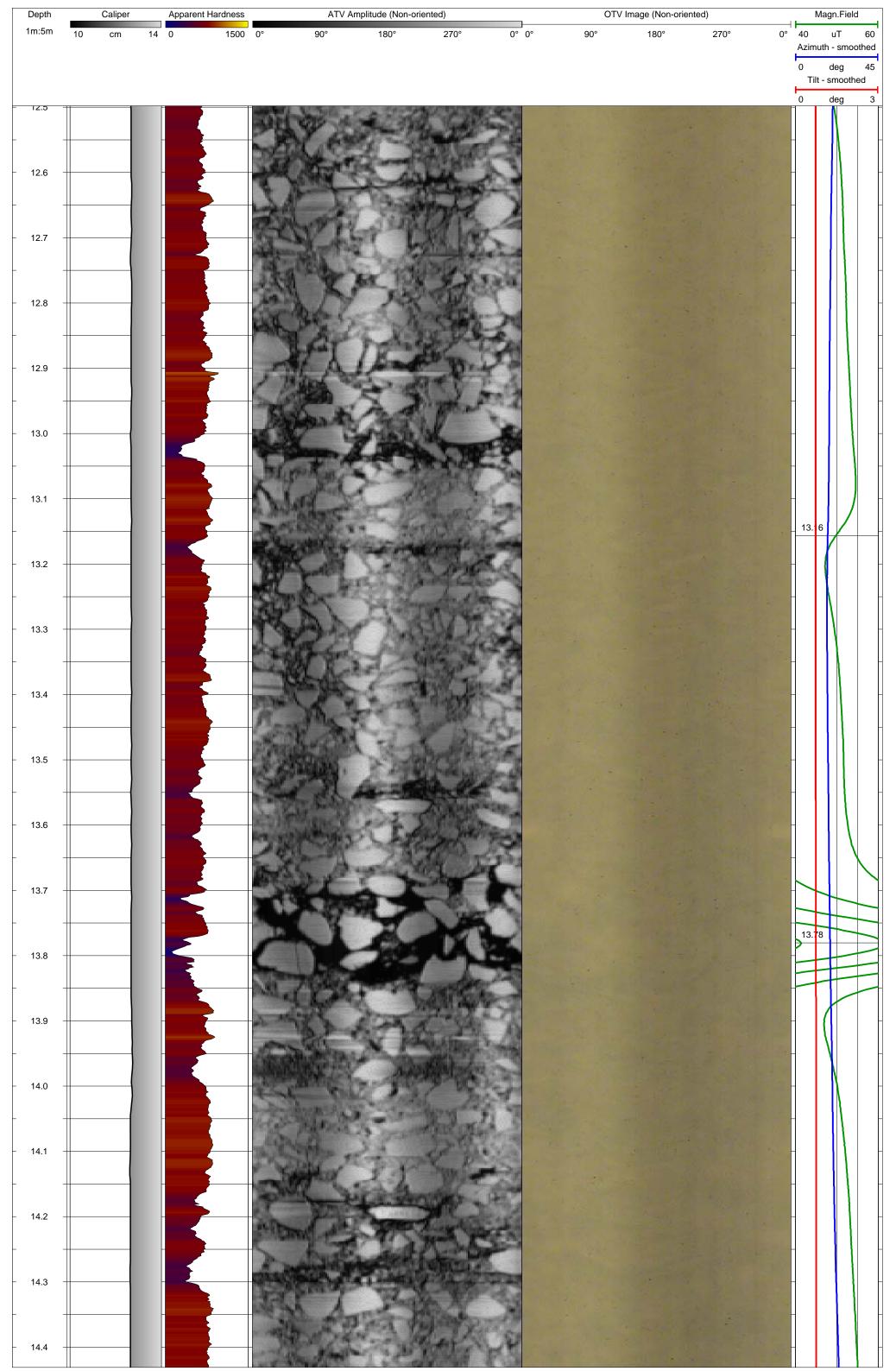

o:\final\2013\1447\13-1447-0516\1314470516-003-tm-rev0-7000\1314470516-003-tm-rev0-7000-colliery dam corehole geophysics 16apr_14.docx

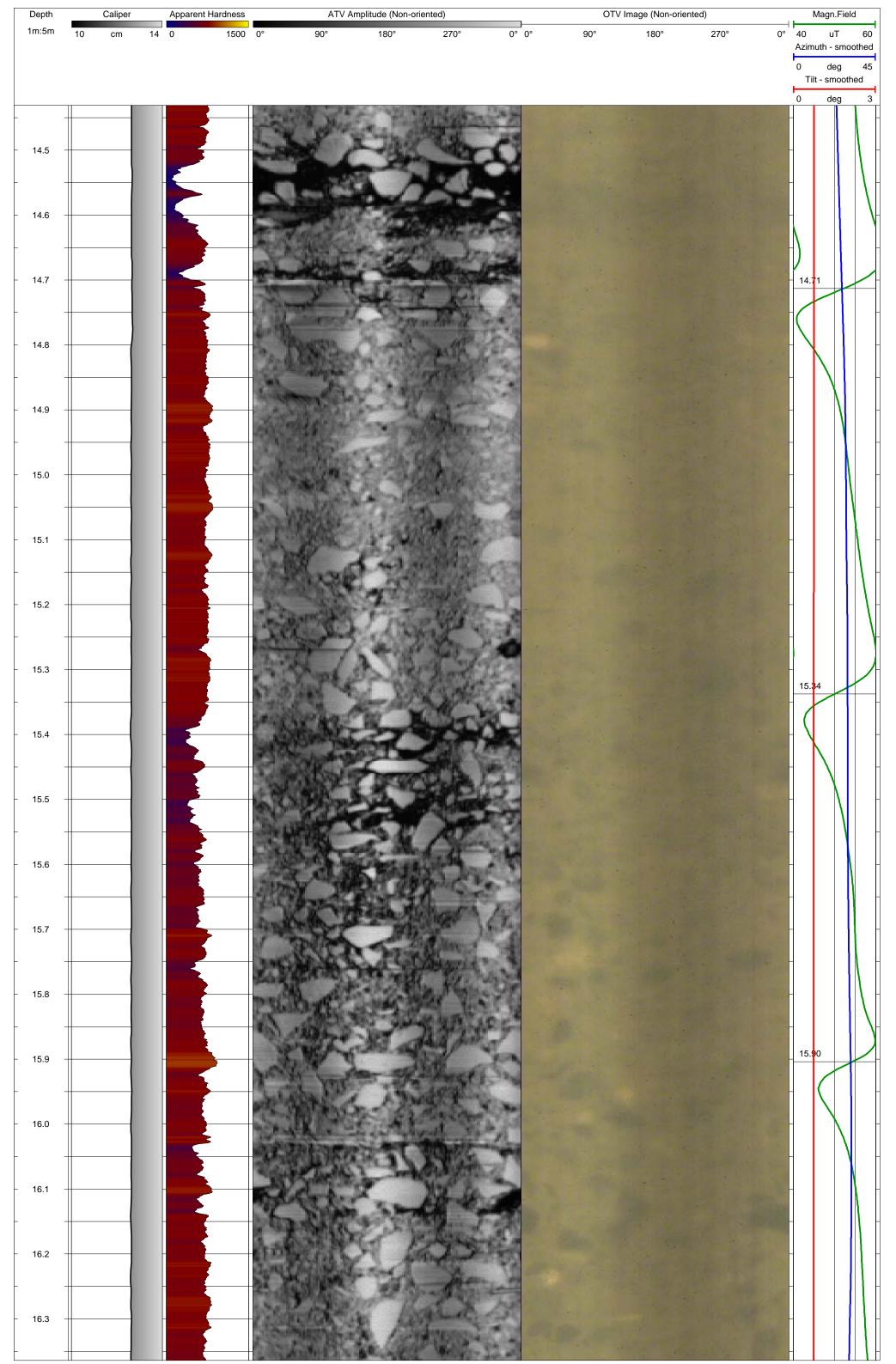


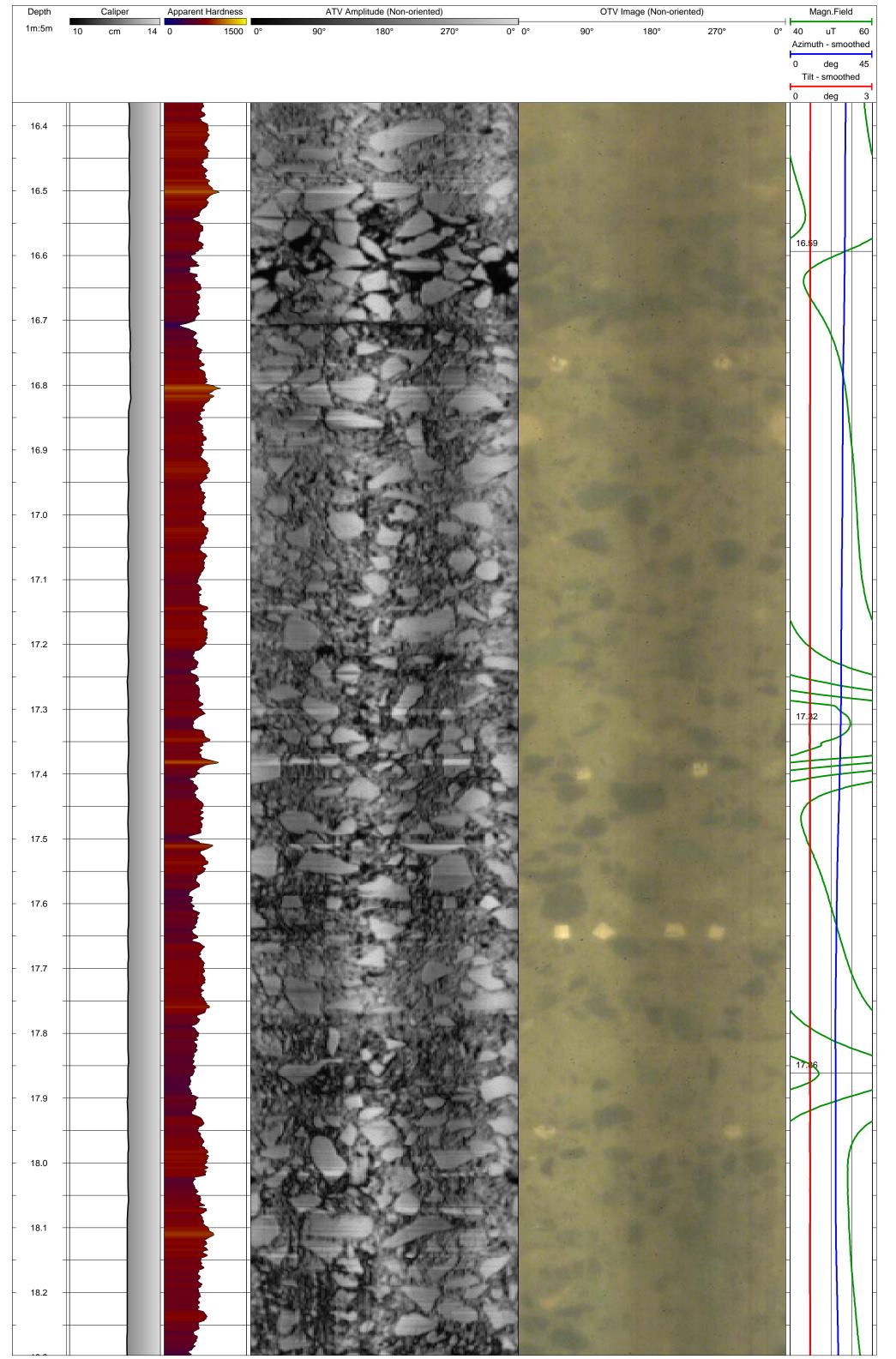

	DRA PROJECT REF. LOCATION	13-1447-0516/7000 Colliery Dams, Nanaimo, B0		Golder		LOG DAT		2014 rface (Elev. 73.5 n
	PROJECT REF.	13-1447-0516/7000 Colliery Dams, Nanaimo, B0	GEOPHYSICAL REC	CORD OF BOREHO	DLE: CH14-02	LOG DAT		2014 rface (Elev. 73.5 r
Depth	Caliper	Apparent Hardness	ATV Amplitude (Non-orie	nted)	TO	√ Image (Non-oriented)		Magn.Field
m:5m -1.2	10 cm 14	4 0 1500 0°	90° 180°	270° 0°	0° 90°	180° 2	270° 0°	° 40 uT Azimuth - smoot 0 deg Tilt - smoothe 0 deg
1.3								-
1.4								-
1.5							-	-
1.6								-
1.7								- -
1.8								-
1.9								-
2.0								
2.1			- 3900 71 24					
2.2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
			Genuinet - Car	Contraction (Contraction)				

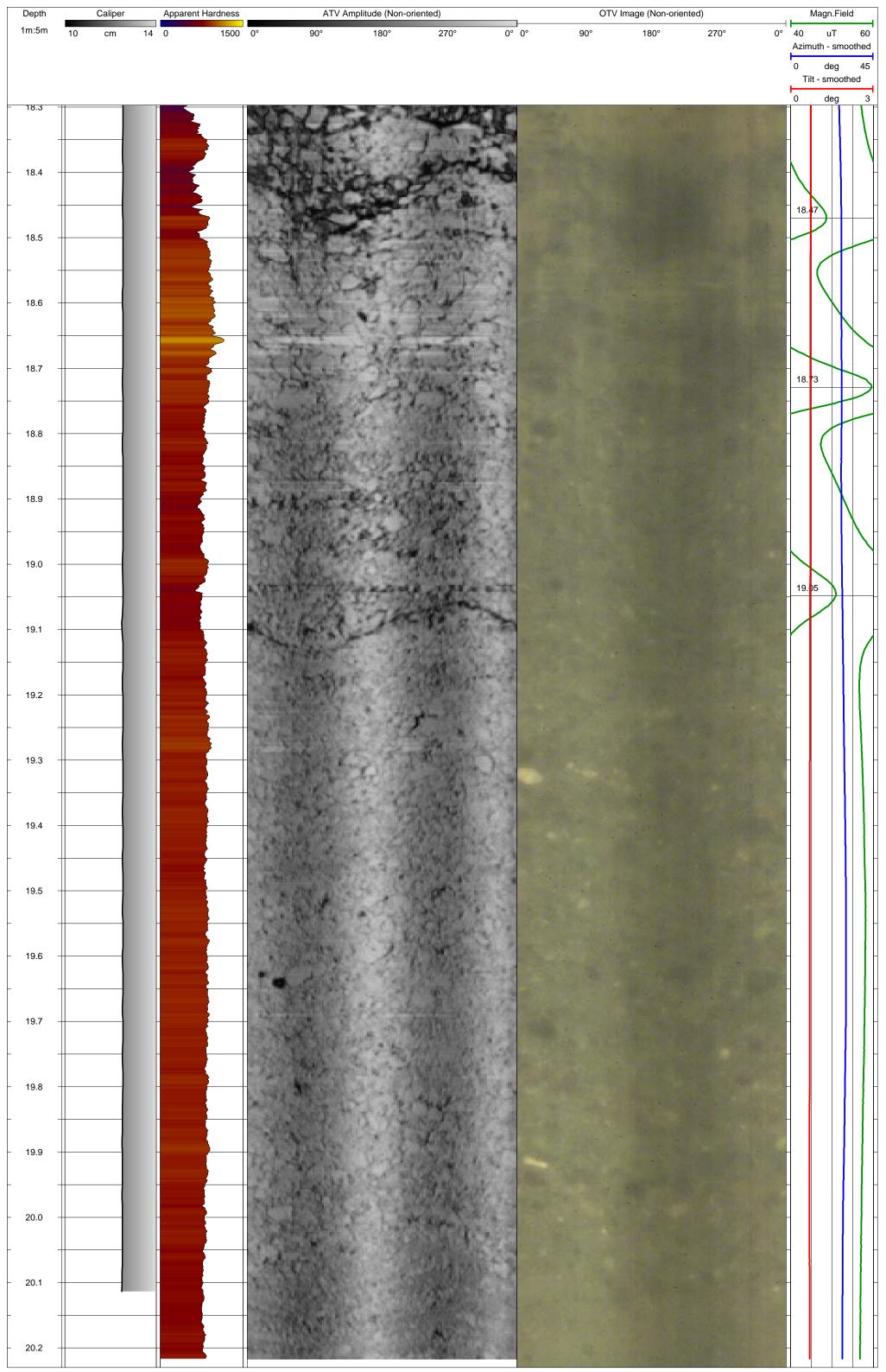



Page 1

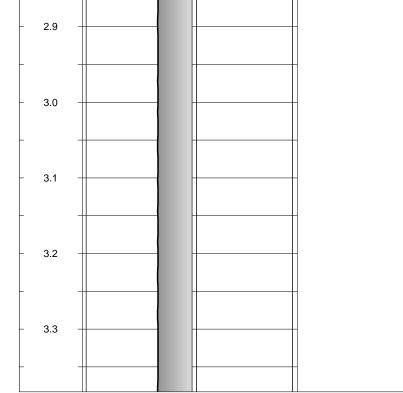


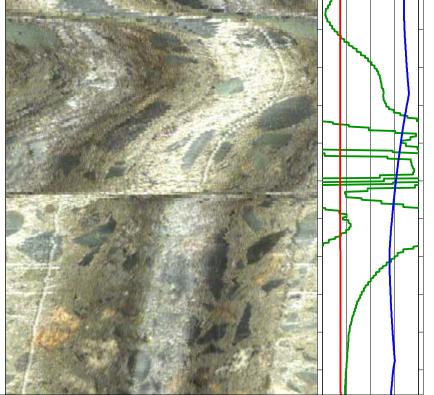






Page 6





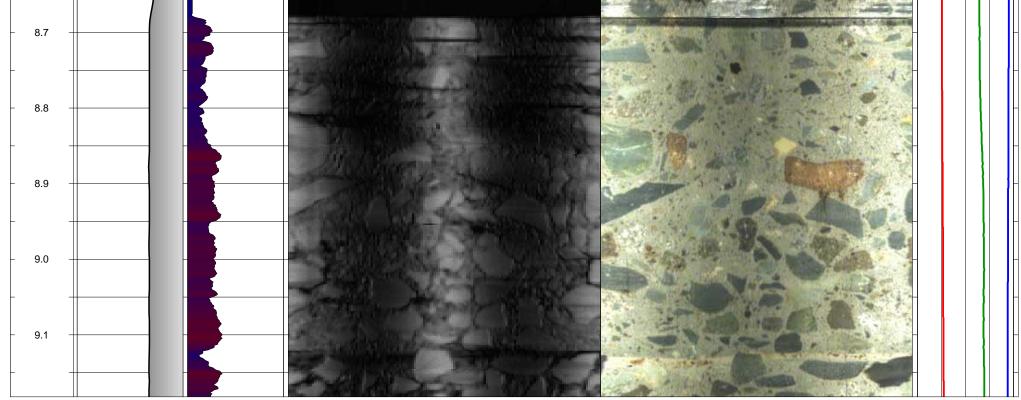
Depth	Depth Caliper			Apparent	Hardness	ATV Amplitude (Non-oriented)						OTV Image (Non-oriented)					Magn.Field		
1m:5m	10	cm	14	0	1500	0°	90°	180°	270°	0° 0'	o	90°	180°	270°	0°	40 Azimi	uT uth - smo	60 oothed	
																0 Tilt	deg - smoot	45 hed	
																0	deg	3	
- 20.3 -																			

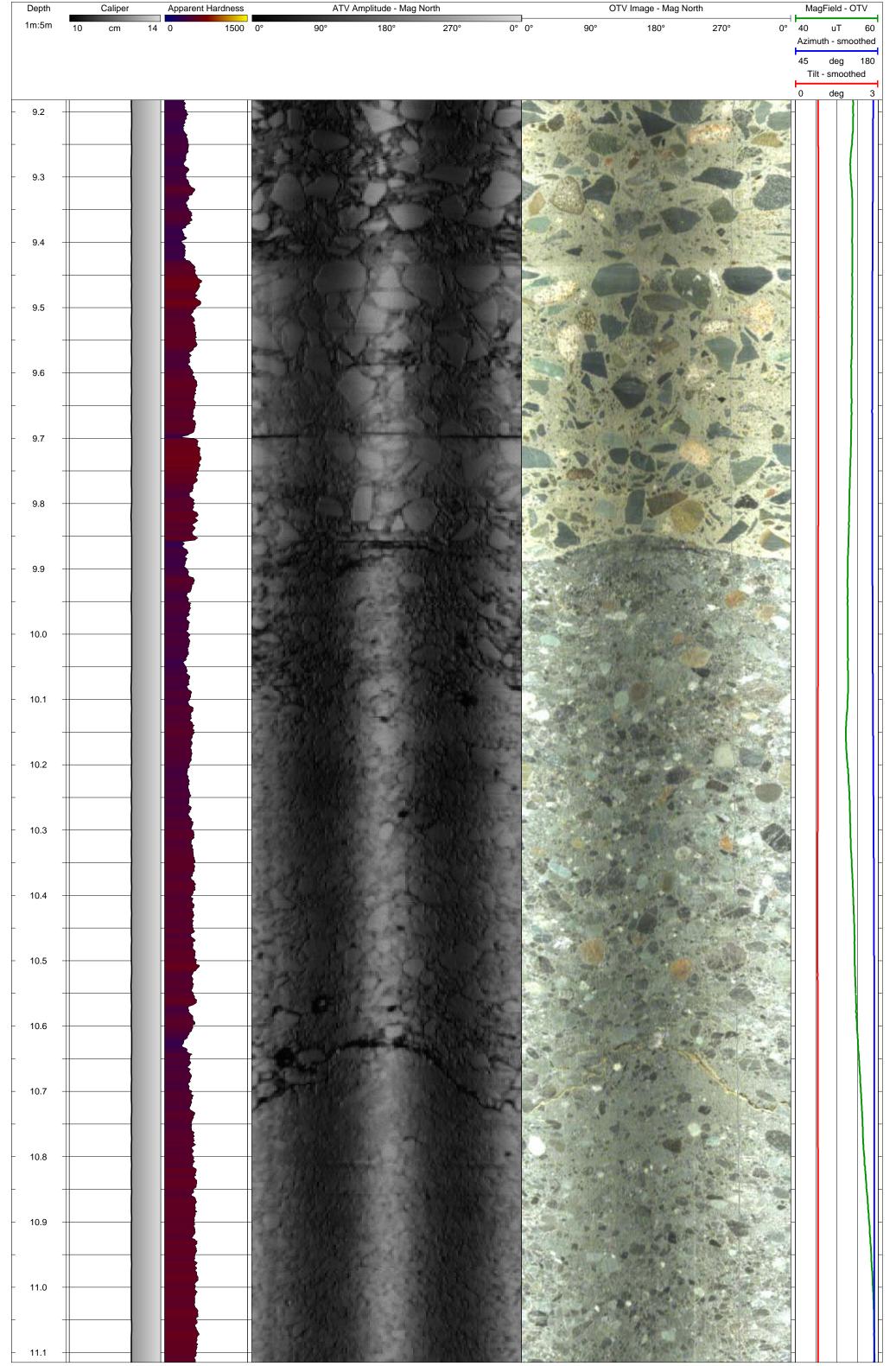
	DRA PROJECT REF.		GEOPHYSICAL RECORD OF BOREHOLE: CH14	-03 LOG DATE March 26, 2014 LOG REF. Ground surface (Elev. 73.5 m)
	PROJECT REF	. 13-1447-0516/7000 Colliery Dams, Nanaimo	GEOPHYSICAL RECORD OF BOREHOLE: CH14	-03 LOG DATE March 26, 2014 LOG REF. Ground surface (Elev. 73.5 m)
Depth	Caliper	Apparent Hardness	ATV Amplitude - Mag North	OTV Image - Mag North MagField - OTV
1m:5m	10 cm	14 0 1500 0°	90° 180° 270° 0° 0° 9	0° 180° 270° 0° 40 uT 60 Azimuth - smoother 45 deg 180 Tilt - smoothed 0 deg 3
1.8				
1.9				
2.0				
2.1				
2.2				
2.3				
2.4				
2.5				
2.6				
2.7				
2.8				

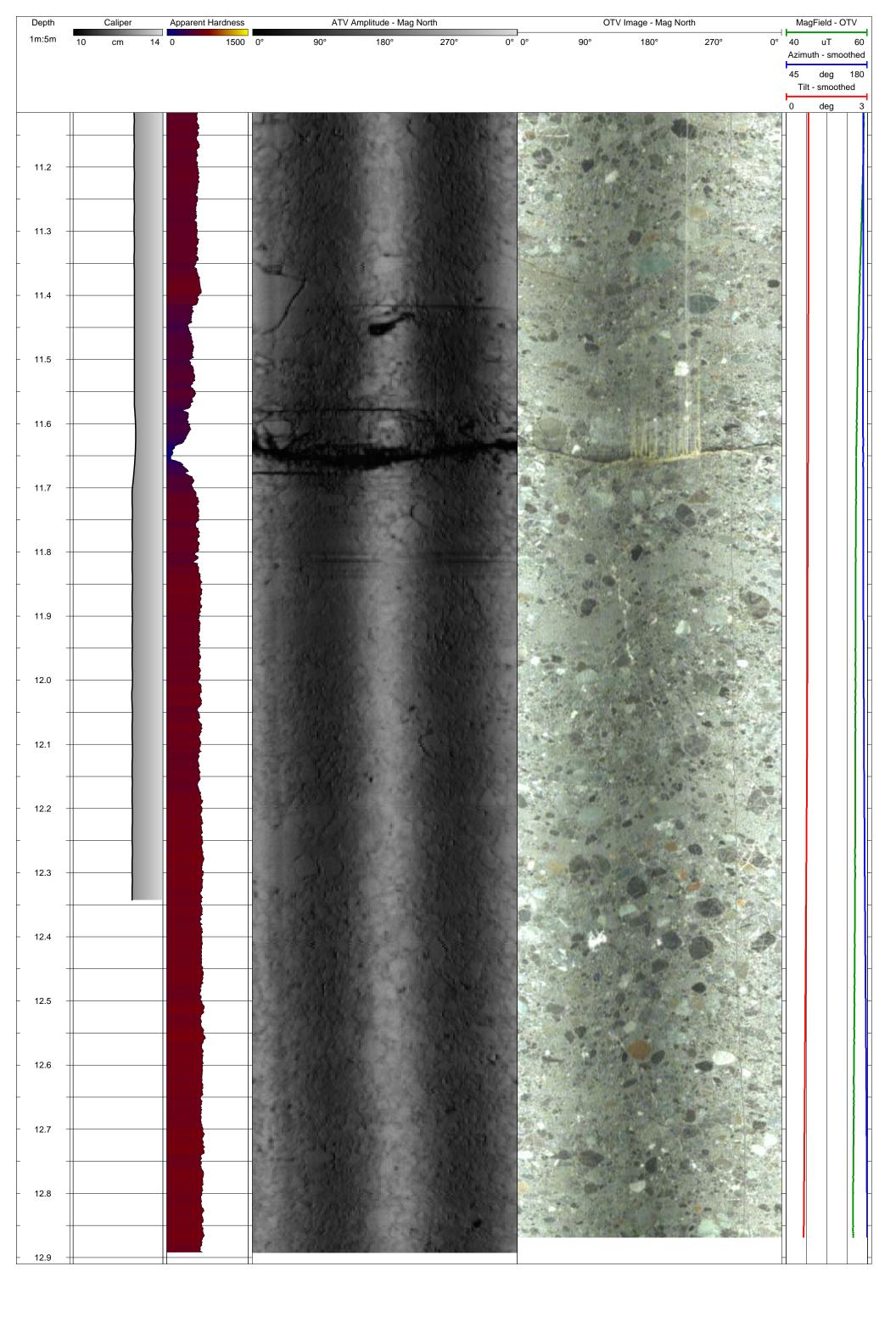




1m:5m 10 cm 14 0 1500 0° 90° 180° 270° 0° 0° 0° 90° 180° 270° 0° 40 uT 6 Azimuth - smoothe 45 deg 18 Tilt - smoothed	Depth	Caliper	Арра	rent Hardness	ATV	Amplitude - Mag	g North		OTV	Image - Mag No	orth	MagField - OTV
								0° 0°				0° 40 uT 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												45 deg 18 Tilt - smoothed
								11 (15 (15 (15 (15 (15 (15 (15 (0 deg
	3.4										日本の	
								and the second	1 March	「三十二十二		
								11.1		and the	With the state	
	3.5								R. C. R.	1.	A	
										the last		
									-	a gran	NOT LANG	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6								R. R.	San B	Norse -	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+		-					泉 (4.)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								and the second state	102			
	3.7									ALL T		
	+											
	20							報社	A BARRIER			
	3.0							and the second			A.	
	+							- meril		An F		
	3.9									No.	12 <	
	0.0							and the second		Tend (人的是	
	+								and the second states	A LAND		
	4.0								XLAN	-		
								a started		Strainal 2	A CONTRACTOR	
	+								S. Mirel	L Sector	10 10 1050	
	4.1											
									- ALA		A Destroyed	
	+								2. Bally and		The	
	4.2								a sha sha ha s	14		
									A State	Con a	No. of Street,	
	+							Frank Day	Stall .	THE REAL		
	4.3										Star Barris	
								and the second		Jane -		
	1									L. Har		
	4.4											
								12 miles			at -	
	Π										198- N. D.	
	4.5									and me		
									A COMPANY	all.		
									R IN SHARE			
	4.6										Star Star	
										1		
										the state	N. CONTRACT	
4.8	4.7									and the second sec		
4.8											A State	
4.8								S all	Contraction Contraction		2º Anna	
	4.8							- Alexandream		A Series	ay and a set of the	




Depth		Caliper		Appar	ent Hardness		ATV	Amplitude - Mag	North		0	TV Image - Mag N	lorth		Mag	Field - O	ΓV .
1m:5m	10	cm	14	0	1500	0°	90°	180°	270°	0° 0°	90°	180°	270°	0°		uT	60
																h - smoo	_
															45 Tilt -	deg smoothe	180 ed
															0	deg	3
											1		the state				
												12 - 31	AL LOL	1			
5.4 -													Tor and	Selfag T			
										A. 1.1	44	and a start					
			-														
5.5 -						-											
												and and					
													3	10			
5.6 -										123							
0.0																	
. –										1			And the				
												Sec.	and had				
5.7 -										1			States of the second				
											ANAL TRANS	ST TA		-			
												RATER	and the second by				
5.8 -						-					Sal						
. –						_							A. Market				
												AL SE	MAR AND	11			
5.9 -												S. P. P. Sung.	and the second	N			
· -												A South L					
													Sugar Provention				
6.0 -										and the second	Section 1		HIDE	15			
													A B	-			
										一個語言	Contraction of the second			SE			
6.1 -						_				S. V.	13 and		Constant and the				
										Se.		LACK AND					
						-				A. 1997	all a start		and the second	-			
6.2 -												A CONTRACTOR OF					
										1	a la la		WITTE	22			
-												and the second	A MARTIN				
6.3 -										12.1		the star he was	the second	in and			
0.0											and the second se		is is	N.A.			
-										A		- 2-1		100			
64											1	States -					
6.4 -											A State						
· -										Contraction of the local division of the loc	-+ 2.4	E Part		23			
										0	10	Print		-			
6.5 -										1.10	S. S. S.	h R. S. Con	A LUCTOR	100			
											-		WY - W	Nº.			
											alate life store and the	12 -		题			
6.6												· ARA					
													A Stateste	CH-			
-												THE REAL PROPERTY	dia ter				
6.7 -										S	a standing		ALL PART				
														-			
	11		1	Η		Н				Dec Phila	ACCESSION COMPANY	A State of the second s	CONTRACTOR OF THE OWNER	ALC: NO	1	1	



epth 1:5m 10	Caliper cm	Apparer 14 0	nt Hardness 1500 0°	AT\ 90°	/ Amplitude - Mag 180°	North 270°	0° 0°	OT\ 90°	/ Image - Mag Nor 180°	270°	0° 40	uT
											Azim 45	uth - smooth deg 1
											Til 0	t - smoothed deg
7.3												
.4 								2- Carl			2.64	
							C. Martin			A CONTRACT	-	
.5								107			N.Y.	
									The the	Ser C		
7.6	_							-			1.000	
							6				1	
7.7									An all	15 2	-	
							1	Part	~ 0		-	
.8		-					San C			P. C.	-	
		-						Sea ??				
7.9		-					4		同情	2 Ctrain		
								- State				
3.0								Cap St		-		
	_							. 30	The last		1	
3.1									PEDA			
										10		
3.2								Neg !				
							No-				4	
3.3							-	A.C.		Call and		
3.4										The second		
							No. 10		There			
3.5								- Martin Pr			-(
										Color.	1996	
3.6								(Colling)	Property of	CT.S		
											-	
					1000		A state of the last				10×110	

Annex C Downhole Seismic Velocity of Lower Dam

Downhole Seismic Field Data Report

Colliery Dam, Nanaimo BC

Prepared for:

Golder Associates

Job No: 14-02034

March 21st, 2014

ConeTec Investigations Ltd.

12140 Vulcan Way Richmond, BC V6V 1J8

Tel: 604-273-4311 Fax: 604-273-4066

Toll Free: 800-567-7969

Email: insitu@conetec.com

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	FIELD EQUIPMENT AND PROCEDURES	1
2.1	Downhole Seismic Testing Procedures	1
3.0	TEST RESULTS	2
3.1	Downhole Seismic Test Results	2
4.0	CLOSING	3

APPENDICES

- APPENDIX A DST Summary and Results
- APPENDIX B DST Time Domain Traces

1.0 INTRODUCTION

The enclosed report presents the results of a downhole seismic test program conducted by ConeTec Investigations Ltd. for Golder Associates on March 21st, 2014 at Colliery Dam, Nanaimo British Columbia. The program consisted of a single test in a cased borehole to a depth of 18.8m.

2.0 FIELD EQUIPMENT AND PROCEDURES

2.1 Downhole Seismic Testing Procedures

Downhole seismic testing (DST) was conducted using a system comprising a surface source (steel beam), a downhole tool equipped with a triaxial geophone package, and a data acquisition system (see Figure 1). In the downhole tool the geophones are mounted on an internal block such that the orientation of the geophones can be maintained within the borehole through the use of a built in fluxgate compass and servo motor system. The equipment and procedure comply with ASTM D 7400 – 08, Standard Test Methods for Downhole Seismic Testing.

The test was performed by lowering the tool to the initial start depth in the cased borehole where it was then coupled to the side of the casing using a motor driven bow spring clamp. Once clamped in place, the two horizontal geophones were aligned parallel and perpendicular to the shear wave source. Doing so maintains the same orientation of the receivers throughout the test which eliminates any apparent phase changes due to rotation of the receivers.

To generate a shear wave, a steel beam was struck a number of times to generate a horizontally polarized shear wave (S wave) that traveled from the surface to the geophone package. The recorded signal from the horizontally oriented geophone parallel to the source was used to determine the arrival time of the shear wave. At each depth the geophone data was reviewed on the data acquisition computer and after sufficient data was recorded at a single depth the tool was lowered by a set increment (1 metre) to the next depth and the procedure was repeated. The depth of the source was also recorded at each test depth, so that travel times could be corrected for the change in raypath as the source wedge was driven deeper. The data is presented as a shear wave velocity profile at the test increments. The time domain traces used for the travel time picks are provided for reference.

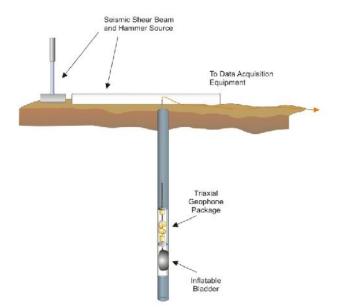


Figure 1 – Typical downhole seismic testing equipment

3.0 TEST RESULTS

3.1 Downhole Seismic Test Results

A summary of the testing performed and the shear wave velocity data, presented in tabular and graphical format, is provided in Appendix A. Images of the time domain traces used for the shear wave picks for all locations are provided for reference in Appendix B. The traces provide a visual representation of the shear wave arrivals and an indication of the data quality. The depth of the data is referenced to the existing ground surface at the time of testing.

4.0 CLOSING

We trust that the information presented in this report is sufficient for your purposes. If you have any questions regarding the contents of this report, please contact our office.

Sincerely,

ConeTec Investigations Ltd.

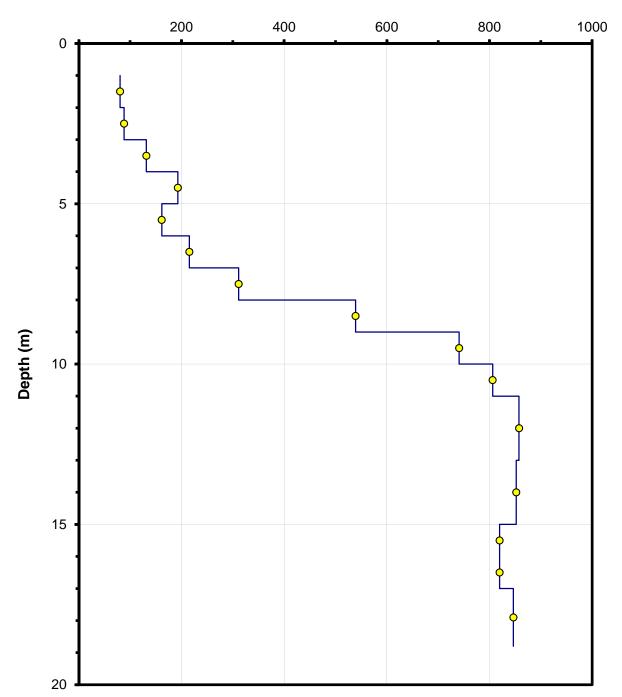
APPENDIX A

DST – Summary and Results

Job No: Client: Project Title: Date: 14-02034 Golder Associates Colliery Dam, Nanaimo BC 28-Mar-14

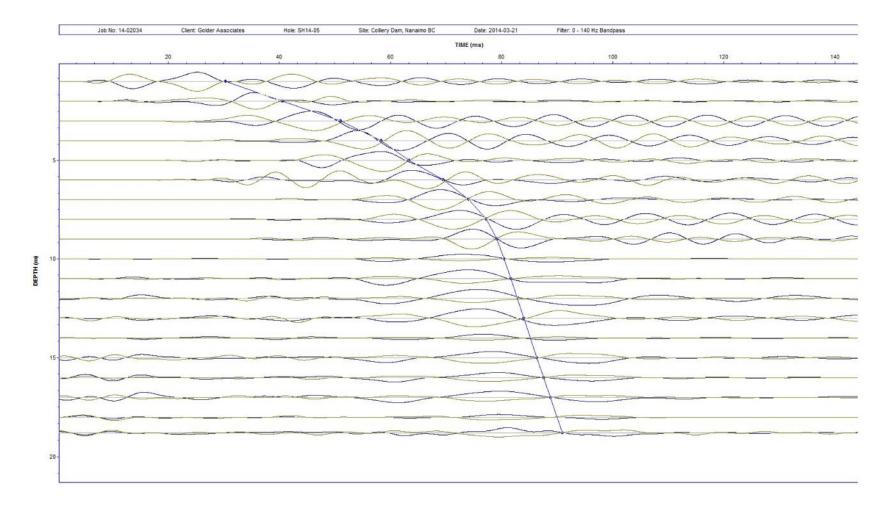
Downhole Seismic Summary						
Sounding ID	Location	Date	Northing (m)	Easting (m)	Comments	
SH14-05	Colliery Dam	03/21/14	5444555	429858	max depth 18.8m	

Coordinates were obtained with a handheld GPS, datum: WGS 84 / UTM Zone 10 North.


Job No.: 14-02034 Client: Golder Associates Colliery Dam, Nanaimo BC Project: Sounding: SH14-05 Date: 21-Mar-14 Receivers: Geostuff BHG-3 - Triaxial 15 Hz geophones Seismograph: Geometrics Geode Seismic Source: Beam Source Offset (m): 1.00 Source Depth (m): 0.00 Geophone Offset (m): 0.00

Downhole Seismic - S Wave

Geophone Depth (m)	Ray Path (m)	Depth Interval (m)	Time Interval (ms)	Vs (m/s)	Mid Layer (m)
1.00	1.41				
2.00	2.24	0.82	10.21	81	1.50
3.00	3.16	0.93	10.49	88	2.50
4.00	4.12	0.96	7.31	132	3.50
5.00	5.10	0.98	5.06	193	4.50
6.00	6.08	0.98	6.09	162	5.50
7.00	7.07	0.99	4.59	215	6.50
8.00	8.06	0.99	3.18	311	7.50
9.00	9.06	0.99	1.84	539	8.50
10.00	10.05	0.99	1.34	741	9.50
11.00	11.05	1.00	1.23	806	10.50
13.00	13.04	1.99	2.32	858	12.00
15.00	15.03	1.99	2.34	852	14.00
16.00	16.03	1.00	1.22	820	15.50
17.00	17.03	1.00	1.22	820	16.50
18.80	18.83	1.80	2.12	847	17.90


Job No: 14-02034 Client: Golder Associates Project: Colliery Dam, Nanaimo BC Sounding: SH14-05 Date: Mar 21, 2014

Vs (m/s)

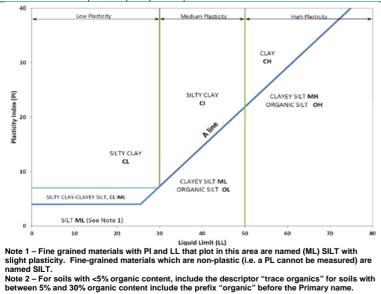
APPENDIX B

DST – Time Domain Records

SH14-05 Time Domain Traces

APPENDIX C

Appendix C Geotechnical Investigation of Lower Dam


Annex A Record of Testholes

METHOD OF SOIL CLASSIFICATION

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$u = \frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name				
			Gravels with	Poorly Graded		<4		≤1 or 3	≥3		GP	GRAVEL				
(ss	2 mm)	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	≤12% fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL				
by mas	SOILS	GRAVELS 0% by mass arse fractior or than 4.75	Gravels with	Below A Line			n/a				GM	SILTY GRAVEL				
INORGANIC (Organic Content ≤30% by mass)	NNED (ger tha	(>5 co large	>12% fines (by mass)	Above A Line			n/a				GC	CLAYEY GRAVEL				
NORG	E-GRA is is lar	un) αu	Sands with	Poorly Graded		<6		≤1 or :	≥3	≤30%	SP	SAND				
Janic C	COARS by mas	DS mass c action i: 14.75 n	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND				
(Orç	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≿50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAN				
	Ŭ	(≥5 co small	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND				
Organic			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			I	ield Indicators									
or norganic	Soil Group	Туре	of Soil	Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name				
		LL plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT				
(s	5 mm)	and LL	and LL ine w()	ine sity ow)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SIL			
INORGANIC (Organic Content ≤30% by mass)	JED SOILS aller than 0.07	FINE-GRAINED SOILS (≥0% by mass is smaller than 0.075 mm)	SILTS	ow A-L Plastic art belk		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT			
ANIC ≤30%			JED SC aller the	JED SC aller th	- Plasti	SILTS SILTS (Non-Plastic or PI and L below A-Line on Plasticity Chart below)	-Plastic belo On Che	h-Plasti bel Chi	bel bel Ch	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%
INORGANIC content ≤30%	GRAIN is sma	(Non		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT				
Janic C	FINE- y mass	ot	on art	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLA				
(Org	50% b	CLAYS and LL p	CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)		None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLA				
	()	(Pl ar	above Plasti b	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY				
S NIC	>30% >30% \$\$\$)	Peat and I	mineral soil tures		<u> </u>	1	1	<u> </u>	1	30% to 75%		SILTY PEA SANDY PEA				
See Constant of the set of the s		tain some							75% to 100%	PT	PEAT					

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to er indicates a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

Μ

MH

MPC

SPC

OC

 SO_4

UC

UU

γ

1.

V (FV)

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)			
BOULDERS	Not Applicable	>300	>12			
COBBLES	Not Applicable	75 to 300	3 to 12			
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75			
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)			
SILT/CLAY	Classified by plasticity	<0.075	< (200)			

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL, SAND and CLAY)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_t), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²					
Term	SPT 'N' (blows/0.3m) ¹				
Very Loose	0 - 4				
Loose	4 to 10				
Compact	10 to 30				
Dense	30 to 50				
Very Dense	>50				
pressure effects.	ASTM D1586, uncorrected for ove criptions based on SPT 'N' rang				

. Definition of compactness descriptions based on SPT 'N' ranges from Terzaghi and Peck (1967) and correspond to typical average N_{60} values.

Field Moisture Condition						
Term	Description					
Dry	Soil flows freely through fingers.					
Moist	Soils are darker than in the dry condition and may feel cool.					
Wet	As moist, but with free water forming on hands when handled.					

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
FS	Foil sample
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
то	Thin-walled, open – note size
TP	Thin-walled, piston – note size
WS	Wash sample
SOIL TESTS	
w	water content
PL, w _p	plastic limit
LL, w _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity

shown as CAD, CAU.

organic content test

unit weight

sieve analysis for particle size

Modified Proctor compaction test

Standard Proctor compaction test

unconfined compression test

concentration of water-soluble sulphates

Tests which are anisotropically consolidated prior to shear are

unconsolidated undrained triaxial test

field vane (LV-laboratory vane test)

combined sieve and hydrometer (H) analysis

Consistency					
Term	Undrained Shear Strength (kPa)	SPT 'N' ¹ (blows/0.3m)			
Very Soft	<12	0 to 2			
Soft	12 to 25	2 to 4			
Firm	25 to 50	4 to 8			
Stiff	50 to 100	8 to 15			
Very Stiff	100 to 200	15 to 30			
Hard	>200	>30			

 SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

	Water Content
Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
1.	GENERAL	(a) W	water content
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	I _p or PI	plasticity index = $(w_l - w_p)$
g	acceleration due to gravity	Ws	shrinkage limit
t	time	IL	liquidity index = $(w - w_p) / I_p$
-		I _C	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
		ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$
н.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
2 8	linear strain	q	rate of flow
	volumetric strain	ч v	velocity of flow
ε _v	coefficient of viscosity	i	hydraulic gradient
η	Poisson's ratio	k	hydraulic conductivity
υ		ĸ	(coefficient of permeability)
σ	total stress	÷	· · · · · · · · · · · · · · · · · · ·
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2,	principal stress (major, intermediate,		
σ_3	minor)	(c)	Consolidation (one-dimensional)
		Cc	compression index
σ_{oct}	mean stress or octahedral stress	•	(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress	_	(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ'_{P}	pre-consolidation stress
(a)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_{p} / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
	density (unit weight) of water		peak and residual shear strength
$\rho_w(\gamma_w)$	density (unit weight) of water density (unit weight) of solid particles	τ _p , τ _r	effective angle of internal friction
ρ _s (γ _s)	unit weight of submerged soil	φ΄ δ	angle of interface friction
γ'	a		coefficient of friction = tan δ
D-	$(\gamma' = \gamma - \gamma_w)$	μ	effective cohesion
D _R	relative density (specific gravity) of solid	C'	
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio	p a'	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
		qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	$\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)		· · · · · · · · · · · · · · · · · · ·

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446453.29 E: 430010.17

RECORD OF BOREHOLE: SH14-04

DRILLING DATE: 02/13/2014

SHEET 1 OF 3 DATUM: NAD 83

D D <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<>	0	RIG	DH H	SOIL PROFILE	ŕ			AMPL			RUN	١	DION	GRA	DATIO	ON %	SHEAR STR Cu, kPa			Q - • U - O	ING	PIEZOMETER STANDPIPE OR
Image: solution of the source solution of the solution		DRILLING	DRILLING ME	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.3m	RUN No.	RECO'	VERY	ICE DESCRIP	GRAVEL	SAND	FINES	Wp H O	NTENT %	field ice	est © lab - O est O	ADDITIONAL LAB. TESTING	OR THERMISTOF INSTALLATIO
1 Poil (1) Po	0																					194
3 BANDOM VARIABLE FILL (69) 3 3 4 4 4 4 5<	1			FILL - (SP) SAND, some gravel to gravelly, some silt; brown-grey; moist. CINDERS AND SLAG FILL - (SP) SAND, fine to coarse, trace to some gravel, fine to coarse, some silt to silty;			G1	-		1				2	75	22						well cover
Image: state of the sub-argular, trace to answer at the sub-argular, tr	2							-		2												S Bentonite Chips
a some silt, brown; moist. a a a a a a b a b a b </td <td></td> <td></td> <td>-</td> <td>RANDOM VARIABLE FILL - (SP) SAND and GRAVEL, fine to coarse,</td> <td></td> <td></td> <td></td> <td>GS</td> <td></td> <td>3</td> <td></td>			-	RANDOM VARIABLE FILL - (SP) SAND and GRAVEL, fine to coarse,				GS		3												
s by set of the sub-angular, the sub-ang	4			sup-rounded to sub-angular, trace to some silt; brown; moist.									-									Pea Gravel
B ROCKFILL, rounded to sub-angular, trace coarse gravel; grey. 5.79 5 7 S S S 8 S S S 9 S S S 9 S S S 9 S S S	5	Sonic ATV Rig	Sonic			67.71	G3	GS		4				47	48	5						
Pea Gravel	7			ROCKFILL, rounded to sub-angular, trace coarse gravel; grey.	0000000																	Bentonite Chips
CONTINUED NEXT PAGE	9		_		2000000000					7												Pea Gravel
					<u> </u>								L									

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446453.29 E: 430010.17

RECORD OF BOREHOLE: SH14-04

DRILLING DATE: 02/13/2014

SHEET 2 OF 3 DATUM: NAD 83

	щ	U	ПР	SOIL PROFILE			S/	AMPL	ES		RU	IN	N	GRA	DATI	ON %	SHEAR Cu, kP	R STREM	NGTH n	at V. + em V.⊕	Q - ● U - O	ں	PIEZOMETE	ER,
	DEPTH SCALE METRES	DRILLING RI	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	RUN No.	RECC	%	EDE	GRAVEL	SAND	FINES	2 WATE Wp —	R CONT	10 6 ENT %	i0 8 field ice	80 I est © Iab - 〇 est 仚	ADDITIONAL LAB. TESTING	PIEZOMETE STANDPIP OR THERMIST(INSTALLATI	OR ION
	- 10			ROCKFILL, rounded to sub-angular, trace coarse gravel; grey. (continued)	0000					7														
	- 11 - 12 - 13		-	- trace to some sand, trace gravel below approximately 12.2 m. FILL - CONCRETE WASTE.	0000000	61.00				9													Pea Gravel 51 mm Slotted PVC Screen Filter Sand	
obertson 4/30/14	- 14	IV Rig	Sonic		4 ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~					10														-
e:LOCALHOST: GINT_GAL_TEMPLATE_DEV LIBrary_GAL LIBRARY.GLB matrobertson 4/30/14	- 16 - 17 - 18		-	TILL-LIKE FILL - (GM) sandy SILTY GRAVEL to (SW/GP) SILTY SAND and GRAVEL, medium to coarse sand, fine to coarse gravel, trace to some plastic fines; brown; with cobbles, moist. - 100mm thick grey layer encountered at approximate 16.5 m depth. - moist to wet from approximately 16.5 m to 18.0 m. - becomes grey at approximately 18		<u>57.04</u> 16.46		GS		11													Bentonite Chips	
VALM Output Form:BC_BOREHOLE (SONIC) (AUTO) Template:LOCALHOST: GNI_GAL_TEMPLATE_DEV	- 19 - 20			m. FILL - (ML) gravelly sandy SILT, fine to coarse, sub-angular gravel; grey; dry. CONTINUED NEXT PAGE		54.15 53.99 19.51	G6	GS		13			_	-		·								
:GINT_GAL_NATIONALIM	DF	L =PT	<u> </u> не	CALE						Í				<u> </u>						LOG	 GED: TN	1	<u> </u>	
File:GINT_		: 5							K	ľ		10 50	ide cia	er LOGGED: TM ates CHECKED: AC										

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446453.29 E: 430010.17

RECORD OF BOREHOLE: SH14-04

SHEET 3 OF 3 DATUM: NAD 83

DRILLING DATE: 02/13/2014

ш	Т			SOIL PROFILE			S	AMPLI	ES			RUN	1	z	GRA	DATI	ON %	SHEAR STR Cu, kPa	ENGTH n	atV.+	Q - ●	0	PIEZOMETER,						
DEPTH SCALE		DRILLING RIG	ILLING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.3m	RUN No.	RE	CO\ %	/ER)	E DESCRIPTIC	GRAVEL	SAND	FINES	WATER CO	40 6	0 8		STIN	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION						
	_		DR		STF	(m)	~		BL		8	8	<u>3</u> 8	Ö				10	20 3										
		Sonic ATV Rig	Sonic	fresh, massive; grey to dark grey; pebbles and granules, medium strong, CONGLOMERATE, clast supported, clasts typically sub-rounded. (continued)		52.47				14													Bentonite Chips						
				End of Borehole.		21.03																							
	2																						-						
-																													
	3																						-						
- - -																													
- 2	24																						-						
- - -																													
- 2	25																						-						
-																													
- 2 - -	26																												
- - 2 -	27																												
- - - 2	8																												
	9																												
	0																												
	DEPTH SCALE LOGGED: TM 1 : 50 LOGGED: TM CHECKED: AC																												

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446460.84 E: 430007.43

RECORD OF BOREHOLE: SH14-05

SHEET 1 OF 3 DATUM: NAD 83

DRILLING DATE: 02/11/2014 - 02/12/2014

METRES DRILLING RIG	NE		101				-				F							1351	()R	
	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	RUN No.	RECOVI %	ERY ୧	ICE DESCRIPTION	GRAVEL	SAND	FINES	WATER CONT	field ice	80 est © lab - O est O	ADDITIONAL LAB. TESTING	PIEZOMETE STANDPIF OR THERMIST INSTALLATI	or Ion
0		Ground Surface		73.50 73.35															Flush mount	80
1		FILL - (SM) SILTY SAND, fine to coarse, some fine gravel; brown; moist. CINDERS AND SLAG FILL - (SP/GP) SAND, fine to coarse, trace gravel, some silt to silty; to (ML) sandy SILT, some gravel; black; moist.		0.15	E1	GS		1											well cover	
2 3					E2 G1	GS GS													Grout	
4					E3	GS		2												
5 Sonic ATV Rig	Sonic				G2 E4	GS GS		3				1	71	28					76 mm PVC Standpipe	
7		RANDOM VARIABLE FILL - (SC) gravelly CLAYEY SAND, fine to coarse sand, fine to coarse gravel; brown; moist. - 89 mm thick sub-angular cobble encountered at approximately 6.4 m depth.		67.10 6.40	E5	GS		4												
8		- 102 mm thick sub-angular cobble encountered at approximately 8.8 m depth.	<u> </u>					5												
10 —		ROCKFILL, rounded to sub-angular; grey.	0000	64.05 9.45	G3	GS		6				21	43	36						
10	_	CONTINUED NEXT PAGE											-							

RECORD OF BOREHOLE: SH14-05

SHEET 2 OF 3 DATUM: NAD 83

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446460.84 E: 430007.43

DRILLING DATE: 02/11/2014 - 02/12/2014

ALE	RIG	THOD	SOIL PROFILE		1	S	AMPL			F	RUN	1	TION	GRA		ON %			NGTH	nat V rem \	'. + (∕.⊕	Q - ● U - O	AL NG	PIEZOMETE STANDPIP OR THERMISTO INSTALLATIO	ER, E
DEPTH SCALE METRES	DRILLING	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN No.			۷ER) ہ	ICE DESCRIPTION	GRAVEL	SAND	FINES	WATE Wp H		40 TENT %	I	la ice es	st © ab - O st O	ADDITIONAL LAB. TESTING	THERMISTO	OR ON
				0				-			<u></u>	4 0	-					10	20	30	40				
· 10 ·			ROCKFILL, rounded to sub-angular; grey. (continued) FILL - (SC) CLAYEY SAND, fine to coarse, some gravel to gravelly, fine to coarsel grey; moist. ROCKFILL, rounded to sub-angular; grey.	<u>2000000000000000000000000000000000000</u>	63.21 10.25 62.96 10.52	9 3			7																
· 12 · 13				00000000000000					8																
· 15 · 16	Sonic ATV Rig	Sonic	TILL-LIKE FILL - (GC/GP) CLAYEY SANDY GRAVEL to (ML) sandy CLAYEY SILT, some gravel, fine to coarse; grey; moist.	0000	<u>58.26</u> 15.24	G4	GS		9				_											76 mm PVC Standpipe Grout	
· 17									10																
· 18 · 19			 0.3 m thick layer of sand, grading to sandy gravel, fine to medium, trace to some fines, encountered at approximately 17.7 m depth. 			G5	GS		11																
20			with cobbles below approximately 19.2 m. cobbles in a sand matrix encountered between 20.6 m and 21.0 m depth.						12				-											Bentonite Chips	
			CONTINUED NEXT PAGE																						
DEI 1 :			CALE					C	Ĩ		G	iol so	de ciź	er ate	S							ED: TN ED: AC			

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446460.84 E: 430007.43

RECORD OF BOREHOLE: SH14-05

DRILLING DATE: 02/11/2014 - 02/12/2014

SHEET 3 OF 3 DATUM: NAD 83

Under State EARLY EARLY <th>0</th> <th>В Ш</th> <th>THO</th> <th>SOIL PROFILE</th> <th></th> <th></th> <th>SA</th> <th>AMPLE</th> <th></th> <th></th> <th>F</th> <th>RUN</th> <th>TION</th> <th>GRA</th> <th>DATIO</th> <th>0N %</th> <th></th> <th></th> <th></th> <th>Q - ● U - O</th> <th>ING</th> <th>PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION</th>	0	В Ш	THO	SOIL PROFILE			SA	AMPLE			F	RUN	TION	GRA	DATIO	0N %				Q - ● U - O	ING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
21 Address Higher (body) starting to conserve gray to take gray to	METRE	DRILLING	DRILLING ME	DESCRIPTION	STRATA PLO	DEPTH	NUMBER	TYPE	BLOWS/0.3m	RUN No.			ICE DESCRIP	GRAVEL	SAND	FINES	WATE Wp —	ENT %	field ice	est ⊚ lab - ⊖ est ☆	ADDITION LAB. TEST	THERMISTOR INSTALLATION
24 fresh. massev gry to dark gry, control. 2.46 1 25 End of Borehole. 5.10 2.40 26 End of Borehole. 2.40 1 27 End of Borehole. 1 1 28 Image: Structure of Structur		sonic ATV Rig	Sonic	TILL-LIKE FILL - (GC/GP) CLAYEY SANDY GRAVEL to (ML) sandy CLAYEY SILT, some gravel, fine to coarse; grey; moist. <i>(continued)</i>		52.01	G6	GS														Bentonite Chips
End of Borehole. Image: Control of Control				pebbles and granules, medium strong CONGLOMERATE, clast supported,		21.49 51.10				13												
	23			End of Borehole.		22.40																
	24																					
	25																					
	26																					
	27																					
29	28																					
	29																					
30 DEPTH SCALE LOGGED: TM 1 : 50 CHECKED: AC	30																					

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446469.88 E: 430004.15

RECORD OF BOREHOLE: SH14-06

DRILLING DATE: 02/14/2014

SHEET 1 OF 3 DATUM: NAD 83

1	ß	ВH	SOIL PROFILE			s	AMPL	ES		RU	N	NOI	GRA	DATIO	ON %	SHEAR STRENG Cu, kPa	GTH na rer	t V. + n V.⊕	Q - ● U - O	2F	PIEZOMETER, STANDPIPE
METRES	DRILLING F	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	RUN No.	RU RECC	VER) % ସାହା	ICE DESCRIPT	GRAVEL	SAND	FINES	20 40 WATER CONTE Wp - OW 10 20	NT %	field	0 est © lab - 〇 est 仚 0	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
0			Ground Surface	<i>"</i>	73.50						7.0					10 20	, 30	4	-		
1			ASPHALT FILL - (SP/GP) SAND and GRAVEL, fine to coarse, sub-angular to sub-rounded; grey; moist. CINDERS AND SLAG FILL - (SP) SAND, fine to coarse, some fine gravel, some silt to silty, sub-angular; grey to black; moist. - 50 mm thick light brown layer encountered at approximately 0.5 m.		0.03 73.04 0.46	ŀ			1												Concrete
2						E1 G1	GS		2				2	66	32						
3			RANDOM VARIABLE FILL - (SP)		69.84 3.66		GS														Pea Gravel
4	Sonic ATV Rig	Sonic	SILT and SAND, fine to coarse, some gravel to (SP/GP) sandy GRAVEL, fine to coarse, sub-rounded to sub-angular, trace to some silt; brown; moist.		3.00	G2	GS		3				19	41	40						
	Sonic	Ň	- 76 mm thick sub-rounded cobble encountered at approximately 5.2 m.		67 71																Bentonite Chips
6	coarse sand, fine to coarse sub-rounded to angular gravel; brown; moist. 4																				
7	7 - with cobbles below approximately																				
8 - trace to some plastic fines encountered between 7.9 m and 8.5 m.														Pea Gravel							
9			 becomes mottled grey below approximately 8.8 m. 152 mm sub-angular cobble encountered at approximately 9.1 m. CONGLOMERATE ROCKFILL, rounded to sub-angular; grey. 	0 40000	63.98 9.53				6												
10			CONTINUED NEXT PAGE	<u>0</u>						+ -	$\left + \right $	+-		+-		+ +					
DEI 1 :			CALE		<u> </u>	1	<u> </u>		Ĩ	A	Gol	de cia	r ite	s	<u> </u>	1			ged: TN Ked: AC		<u> </u>

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446469.88 E: 430004.15

RECORD OF BOREHOLE: SH14-06

DRILLING DATE: 02/14/2014

SHEET 2 OF 3 DATUM: NAD 83

	RIG	THOD	SOIL PROFILE	1. 1		SA	MPLE	ES		R	RUN	I	lion	GRA	DATIO	ON %	SHEAR Cu, kPa	STREM	IGTH	nat V. + rem V. €	- Q - ● 9 U - O	R₽	PIEZOMETER, STANDPIPE
METRES	DRILLING F	DRILLING METHOD	DESCRIPTION		ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN No.			/ERY ନିର୍ବ	ICE DESCRIPTION	GRAVEL	SAND	FINES	20 WATEF Wp		ENT %	field	80 est ⊚ lab - ⊖ est ☆ 40	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
10 -			CONGLOMERATE ROCKFILL, rounded to sub-angular; grey. (continued)	200000					6														Pea Gravel
12				000000000					7														Bentonite Chips
13	v Rig		- core broken up from approximately 13.4 m to 15.4 m.	00000000000					8														
15	Sonic ATV Rig	Sonic		0000000000					9														7605050505050505050
17			 slight cohesive behavior observed in fines matrix within rockfill between 16.6 m and 16.9 m. FILL - (SP) SAND, fine to coarse, some fine gravel to gravelly, trace to some silt; grey; moist. 0.2 m thick layer of sand, some silt to silty, trace to some plastic fines encountered at approximately 17.4 m. fresh, massive; grey to dark grey; pebbles and granules, medium strong CONGLOMERATE, clast supported, 		<u>56.58</u> 16.92 <u>55.97</u> 17.53				10														Pea Gravel
19			CONGLOMERATE, clast supported, clasts typically sub-rounded.						11					·									Bentonite Seal
20			CONTINUED NEXT PAGE		_									_									
DEF 1 :			CALE					(Ì	Å	G	iol so	de cia	r ite:	S						ged: TN Ked: A0		

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446469.88 E: 430004.15

RECORD OF BOREHOLE: SH14-06

SHEET 3 OF 3 DATUM: NAD 83

DRILLING DATE: 02/14/2014

			0	SOIL PROFILE			s	AMPLI	ES		F	RUN		z	GRA	DATIO	ON %	SHEAF	RSTREN	IGTH n	atV.+	Q - ●	0	PIEZOMETER,			
DEPTH SCAL	METRES	DRILLING RIG	RILLING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	RUN No.			/ERY	ICE DESCRIPTION	GRAVEL	SAND	FINES	2 WATE Wp -	R CONT	0 6 ENT %	i0 8 field ice	80 I Iab - ⊖ est ☆	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION			
					ω.				ш		8	8	3 ¥	-				1	0 2	20 3	0 4	0					
	20	Sonic ATV Rig	Sonic	fresh, massive; grey to dark grey; pebbles and granules, medium strong CONGLOMERATE, clast supported, clasts typically sub-rounded. (continued)		52.47				12														Bentonite Seal			
				End of Borehole.		21.03																					
	22																										
	23																										
	24																										
artson 4/30/14	25																										
	26																										
LIDRAUCAL LIBH																											
I I I I I I	27																										
	28																										
	29																										
	30																										
		PTI	H SC	CALE						7				 -	r						LOG	GED: TN	л				
FIIE:GIN	1 :								V	Ð	A		501 50	cie cie	ite	s					CHEC	KED: A	2				

			T No.: 13-1447-0516 / 7000 / 7300			RE	EC	OF	D OF	TES	ST PI	T: TP	14-0 1	1					SHEI	ET 1 OF 1
	PR	OJEC	City of Nanaimo T: Colliery Dams DN: Crest of Berm						EX	CAVAT	ION DA	TE: Apr	il 01, 201	14					DAT	JM: NAD 83
	20	0, 111					I	NCL	.INATIOI	N: -90°										
L	ł	z	SOIL PROFILE			SA	MPL	ES	SHEAR Cu, kPa	STREN	IGTH r	at V. + em V. ⊕	Q - ● U - O	GR	ADATIO	N %		Q N N N	_ <u>0</u>	PIEZOMETER, STANDPIPE, THERMISTOR
	METRES	EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	20 WA Wp 10		ONTENT	Pocket I 0 8 PERCEI NP - No 0 4	i0 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
-	0		Ground Surface TOPSOIL FILL - (ML) CLAYEY SILT,	\boxtimes	0.00															-
		Dug by Hand Shovel	some organics (roots), trace to some sand, trace gravel; brown; w>PL. FILL - (SP/GP) SAND and GRAVEL, fine to coarse, trace silt; brown-grey to grey; with cobbles, moist, dense.			1	GS													
-				0.00 000 0.00 100		2	GS													
	2		End of Test Pit.		0.99															- - - - - - - - - - - - - - - - - - -
LB matrobertson 4/25/14	4																			
- LIBRARY.G	5																			-
File:GINT_GA		:PTH \$	SCALE						Ê	G	olde ocia	r tes						GGED: T		

	PROJECT No.: 13-1447-0516 / 7000 / 7300 RECORD OF TEST PIT: TP14-01B SHEET 1 OF 1 CLIENT: City of Nanaimo PROJECT: Collieny Dams LOCATION: Crest of Berm EXCAVATION DATE: April 01, 2014 DATUM: NAD 83																	
PI	ROJE	CT: Colliery Dams ION: Crest of Berm						EXCAVA	TION DA	TE: Apr	il 01, 20	14					DAT	UM: NAD 83
		1				I		INATION: -90								1		
SALE	N	SOIL PROFILE	⊢		SAM			SHEAR STRENGTH Cu, kPa		nat V. + Q - ● rem V. ⊕ U - O Pocket Pen - ■		GRADATIC		N %	- 2	DNNO!	ING	PIEZOMETER, STANDPIPE, THERMISTOR INSTALLATION
DEPTH SCALE METRES	EXCAVATION	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY %	WATER (ONTEN	60 8 F PERCE	80 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	OR SEEPAGE OBSERVATION
— c	land	Ground Surface TOPSOIL FILL - (ML) CLAYEY SILT, some organics (roots), trace to some sand, trace gravel: brown: w>PL.	×				-											
-	Dug by Hand	some organics (roots), trace to some sand, trace gravel; brown; w>PL. CINDERS AND SLAG FILL	×	0.30			+											
-		End of Test Pit.																-
																		-
-																		-
-																		-
-																		-
- 2																		-
_																		-
-																		-
-																		-
- 3 - -																		
-																		-
-																		-
- 4																		-
4/25/14																		-
atrobertson																		-
RY.GLB m																		-
																		-
V LIbrary				4		2	2		XC/ 4	1 H 1		in	1./20					
PLATE_DE			and and							A.								
_GAL_TEM						A A					7							
DST: GINT				N.	Se !			Alte										
e:LOCALHO				A		•					12							
0 Templat					Fr.		1		A SU									
							1	1										
TESTPIT		4			1					家								
ut Form:BC					(7)				1 and									
VALIM Out				AT A		N ISC		TOF Y	1.0		and the		1 de las					
								Ā										
Z	EPTH : 40	SCALE							olde socia	r ites						GGED: T CKED: A		
								- 110										

ſ	PROJECT No.: 13-1447-0516 / 7000 / 7300 RECORD OF TEST PIT: TP14-02 SHEET 1 OF 1 CLIENT: City of Nanaimo DATUM: NAD 83 DATUM: NAD 83 LOCATION: Crest of Berm EXCAVATION DATE: April 01, 2014 DATUM: NAD 83																		
	PR	OJEC	T: Colliery Dams						EXCAVA	TION DA	TE: Apr	il 01, 20 [.]	14					DAT	JM: NAD 83
								INCI	INATION: -90							-			
	ш Т	No.	SOIL PROFILE			SA	MPL		SHEAR STRE Cu, kPa	NGTH r	nat V. + Q - ● em V. ⊕ U - O Pocket Pen - ■		GR	GRADATIO		- 2	DNN0 NO	2 ^C	PIEZOMETER, STANDPIPE, THERMISTOR
	DEPTH SCALE METRES	EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY %	WATER C	ONTENT	0 8 PERCEI	80 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
	- 0		Ground Surface TOPSOIL FILL - (ML) CLAYEY SILT,	×															
		Dug by Hand Shovel	some organics (roots), trace to some sand, trace gravel; brown; w>PL. FILL - (SP/GP) SAND and GRAVEL, fine to coarse, trace silt; brown-grey to grey; with cobbles, moist, dense.		0.08														
			End of Test Pit.	0.70	0.61														-
_	- 1																		-
																			-
F																			-
																			-
	- 2																		-
-																			-
																			-
	- 3																		-
-																			-
-																			-
	- 4																		
4//22/14																			-
atrobertsor																			-
Y.GLB m																			
	- 5																		
ho						* 10.00	7												
אווטאאנואי טעטעורמוזיטט_ובטורון איוה רחטוט ופווקמפינטטאנחטטו: פואי_טאנ_ובאויבאוב_טבי ו																			
		EPTH S : 40	SCALE							olde	r .tes						GGED: T CKED: A		

	PROJECT No.: 13-1447-0516 / 7000 / 7300 RECORD OF TEST PIT: TP14-02B SHEET 1 OF 1 CLIENT: City of Nanaimo DATUM: NAD 83 DATUM: NAD 83 LOCATION: Crest of Berm EXCAVATION DATE: April 01, 2014 DATUM: NAD 83														ET 1 OF 1					
F	PRC	ENT: DJEC CATIC	City of Nanaimo T: Colliery Dams N: Crest of Berm						EX	CAVAT	ION DA	TE: Apr	il 01, 20 [.]	14					DAT	JM: NAD 83
							I	INCL	INATION											
ΓE		N	SOIL PROFILE	1.	1	SA	MPL		SHEAR STRENGTH nat V. + Q - Cu, kPa rem V. ⊕ U - Pocket Pen -				Q - Q	GRADATION %		N %	~		NG	PIEZOMETER, STANDPIPE, THERMISTOR
DEPTH SCALE		EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	20 WA Wp 10		10 6 ONTENT	0 8 PERCEI	0 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
	+	Dug by Hand Find Shovel	Ground Surface TOPSOIL FILL - (ML) CLAYEY SILT, some organics (roots), trace to some sand, trace gravel; brown; w>PL. CINDERS AND SLAG FILL End of Test Pit.																	
								K I SOUL												
Z	DEF		CALE						Ø	G	olde: socia	r tes						GGED: T CKED: A		

F	RO	JEC	T No.: 13-1447-0516 / 7000 / 7300			RE	C	OR	D OF	TES	ST PI	T: TF	14-0	3					SHE	ET 1 OF 1
			City of Nanaimo T: Colliery Dams						EV0	A)/AT		TE. A	-104 00						DAT	UM: NAD 83
	OC	ATIC	N: Crest of Dam						EXC	AVAI	ION DA	TE: Apr	ril 01, 20	14						
							П	NCL	INATION:	-90°										
			SOIL PROFILE			SAN	1PL I	FS	SHEAR S	STREN	lGTH r	at V. +	Q - ● U - O	GR	ADATIO	N %		0		PIEZOMETER,
DEPTH SCALE METRES	į	EXCAVATION		H	1				Cu, kPa		r	em V. ⊕ Pocket	U - O Pen - 📕				⊢≿	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	STANDPIPE, THERMISTOR INSTALLATION
1 SC				STRATA PLOT	ELEV.	ЦШ	ш	RECOVERY %	20		0 6	i0 8	30	Ē	g .	S	PLASTICITY	I GR	TION	OR
E L L		MEXCA	DESCRIPTION	ATA	DEPTH	NUMBER	ТҮРЕ	N N			NTENT			GRAVEL	SAND	FINES	LAS	SCI	B. T	SEEPAGE OBSERVATION
ā	ľ	ш		STR.	(m)	ž		REC	Wp H 10		.0 3	NP - No	WI n-Plastic					DIG	< □	
			Ground Surface					_												
-			TOPSOIL FILL - (ML) SANDY SILT,	\otimes	0.00															-
Ł			some gravel to gravelly, some organics (rootlets); dark brown to																	-
-	Puor		black: with cobbles moist	4	0.30															-
F	1.4	Dug by Hand Shovel	(SP) SAND, fine, some gravel, trace organics (rootlets); light grey to brown mottled orange, with cobbles, moist. - becomes gravelly beyond approximately 0.61 m depth.			1	GS													-
L	ć	3	- becomes gravelly beyond																	-
-			approximately 0.61 m depth.																	-
-	1				1.07		GS													
E			End of Test Pit.																	-
-																				-
F																				-
E																				-
-																				-
F	2																			-
E																				-
F																				-
E.																				-
-																				-
F																				-
-	3																			-
-																				-
F																				-
E																				-
-																				-
F																				-
Ŀ	4																			-
4																				-
1 1																				-
- Lette																				-
I I																				-
																				-
BRAR	5																			_
I CALL																				-
ibrary:					L				VICTOR AND ADDRESS TO											
IUNALM UNDERPORTED EISEN WITH PHOLO TEMPARELUAALHOST GINT_GAL_EMPLATE_U																				
)EP	TH S	CALE								ماطم	•					LOO	GGED: T	M	
1	: 4	40					J	= U Ass	olde	tes					CHE	CKED: A	AC			

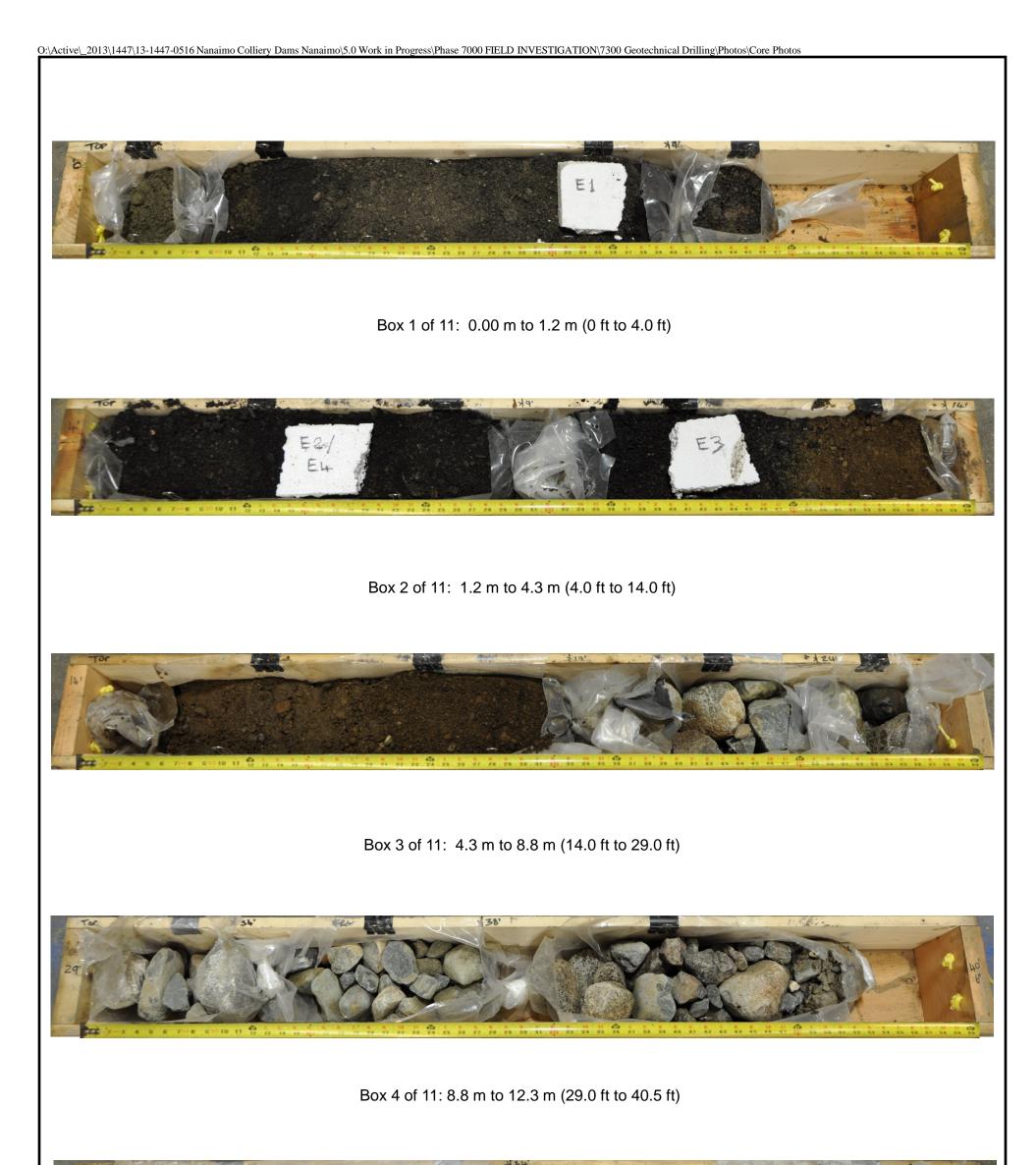
D		CT No.: 13-1447-0516 / 7000 / 7300			Pr	<u>.</u>	~~			ים דפ	T. TO	04.4.0	A					SHE	ET 1 OF 1	
		: City of Nanaimo CT: Colliery Dams			RE	:0	OF	rd of	·IE	SIP	1:18	14-04	4					DATUM: NAD 83		
PF	ROJE DCAT	CT: Colliery Dams ON: Crest of Dam						EX	CAVAT	TION DA	TE: Apr	il 01, 20	14							
						I	NCI	LINATIO												
μ	z	SOIL PROFILE			SAMPLES SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O										N %	<u> </u>	DND NO	ĘF.	PIEZOMETER, STANDPIPE, THERMISTOR	
DEPTH SCALE METRES	EXCAVATION		STRATA PLOT	ELEV.	ЕR	ш	RECOVERY %	20				80	ΈL	9	S	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR	
DEPTI	EXCA	DESCRIPTION	RATA	DEPTH	NUMBER	TYPE	COVE	WA Wp			PERCE		GRAVEL	SAND	FINES	PLAS	OZEN	ADDI AB. T	SEEPAGE OBSERVATION	
			STI	(m)	\vdash		RE	1(20 :	NP - Noi 30 4	n-Plastic 0					Ë –			
0	\vdash	Ground Surface TOPSOIL FILL - (ML) SANDY SILT,		0.00		_													-	
F		some gravel to gravelly, some organics (rootlets); dark brown to black; with cobbles, moist.	\mathbb{X}	0.10															-	
F	and	- geogrid encountered at		Ż															-	
-	Dug by Hand	CINDERS AND SLAG FILL	' 🛞		1	GS													-	
F	Ď	(SP/GP) SAND and GRAVEL, fine to	$-\bigotimes$	0.91	\vdash														-	
- 1		coarse, with cobbles, rounded to sub-angular; brown; moist.	0.0 0.0 0.0 0.0			GS														
E		-	<u>0,00</u>	1.30	, 	_														
L		End of Test Pit.																	-	
F																			-	
- 2																			-	
-																			-	
-																			-	
E																			-	
E																			-	
- 3																				
_																			-	
_																			-	
F																			-	
F																			-	
- 4																			-	
4/25/14																			-	
obertson																			-	
B matr																			-	
- 5																			-	
																			-	
_ibrary:_0				<u> </u>			Ne foot of	4. C.S. 2. 2				1000								
4_MTIONALIM OutputForm.BC_TESTPIT WITH PHOTO Tempare.LOCALHOST: GINT_GAL_TEMPLATE_DE																				
z	: 40	SCALE						G	olde	r tes						GGED: T CKED: A				

PROJECT No.: 13-1447-0516 / 7000 / 7300 **RECORD OF TEST PIT: TP14-05** SHEET 1 OF 1 CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Walkway of Spillway DATUM: NAD 83 EXCAVATION DATE: April 01, 2014 INCLINATION: -90° SHEAR STRENGTH nat V. + Q - ● Cu, kPa net V. ⊕ U - O Pocket Pen - ■ **GRADATION %** PIEZOMETER, STANDPIPE, THERMISTOR SOIL PROFILE SAMPLES FROZEN GROUND DESCRIPTION DEPTH SCALE METRES ADDITIONAL LAB. TESTING EXCAVATION METHOD PLASTICITY INSTALLATION STRATA PLOT 40 60 80 20 GRAVEL OR NUMBER RECOVERY FINES SAND ELEV. TYPE WATER CONTENT PERCENT SEEPAGE OBSERVATION DESCRIPTION DEPTH -OW V I WI NP - Non-Plastic 30 40 WpH (m) 10 20 Ground Surface POSSIBLE FILL - (SP) SAND, fine to 0 0.00 coarse, some organics, some silt, trace to some gravel; grey-brown to 0.23 brown; moist. POSSIBLE FILL - (SM/GM) SILTY SAND and GRAVEL, fine to coarse gravel; grey-brown to brown; moist. 0.53 Dug by Hand (SP) SAND, fine to coarse, some gravel to gravelly, trace to some silt, trace organics (roots); brown; with rounded to sub-angular cobbles, moist. - 0.23 m thick cobble encountered at approximately 1.2 m depth. 1.52 - a stake was hammered into the ground from 1.52 m to a depth of approximatley 1.78 m. 2 End of Test Pit. 3 4/25/14 GLB 5 GAL LOGGED: TM DEPTH SCALE Golder CHECKED: AC 1:40 sociates

IBRARY

	PROJECT No.: 13-1447-0516 / 7000 / 7300 RECORD OF TEST PIT: TP14-06 SHEET 1 OF 1 CLIENT: City of Nanaimo DATUM: NAD 83																		
								EXCAV	TION DA	TE: Apr	ʻil 01, 20 [.]	14					DATI	JM: NAD 83	
							I	INCL	LINATION: -9	D°									
П		N	SOIL PROFILE		i	SA	MPL					Q - ● U - O Pen - ■	GR	ADATIO 1	N %	~		NG	PIEZOMETER, STANDPIPE, THERMISTOR
DEPTH SCALE METRES		EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	20 WATER Wp	CONTEN	60 8 PERCE	80 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
		Dug by Hand Shovel	Ground Surface (ML) SiLT, some sand to sandy, some organics (roots), trace gravel; brown to black; moist. (SP) SAND, fine to coarse, some silt, some gravel to gravelly, some organics (roots), with cobbles; brown; less roots encountered below approximately 0.5 m depth. End of Test Pit. End of Test Pit.		0.00														
			CALE					J		Golde	r						GGED: T		
1	:	40								socia	tes					CHE	CKED: A	NC	

	PROJECT No.: 13-1447-0516 / 7000 / 7300 RECORD OF TEST PIT: TP14-07 SHEET 1 OF 1 CLIENT: City of Nanaimo DROUFCT ON INTERNATIONAL DATUM: NAD 83 DATUM: NAD 83																			
	PROJECT: Colliery Dams EXCAVATION DATE: April 01, 2014 LOCATION: Crest of Berm EXCAVATION DATE: April 01, 2014																			
							IN		ATION:											
ALE	_	NO C	SOIL PROFILE		1	SAN	IPLE:	<u> </u>	HEAR S [°] u, kPa	TRENC	GTH n	at V. + em V. ⊕ Pocket I	Q - ● U - O Pen - ■	GR	ADATIO	N %	Ł		AL NG	PIEZOMETER, STANDPIPE, THERMISTOR INSTALLATION
DEPTH SCALE	MEIKE	EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER			20 WATI Wp H 10	0 40 6 ATER CONTENT		0 8	0 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	OR SEEPAGE OBSERVATION
RV.GLB materiariariariariariariariariariariariariar	0	Dug by Hand Shovel Shovel	Ground Surface FILL - (SP/GP) SAND and GRAVEL, fine to coarse, some silt to silty, with cobbles, with organics; brown to brown-grey; moist. CINDERS AND SLAG FILL End of Test Pit.		(m) 0.00 0.23															
ATIONALIM OutputForm:BC_TESTPIT WITH PHOTO Tempat																				
Z	DEF 1 :		CALE					(Ð	Go	olde: ocia	r tes						GGED: T CKED: A		


	PROJECT No.: 13-1447-0516 / 7000 / 7300 RECORD OF TEST PIT: TP14-08 SHEET 1 OF 1 CLIENT: City of Nanaimo																			
	PRC	DJEC.	City of Nanaimo T: Colliery Dams N: Toe of Dam						EXCA	VATIO	N DA	ΓE: Apr	il 01, 20 <i>1</i>	14					DAT	UM: NAD 83
							II	NCL	_INATION: ·	-90°										
щ		z	SOIL PROFILE			SAM	/PLI	ES	SHEAR ST Cu, kPa	RENG	TH n re	atV.+ emV.⊕	Q - ● U - O	GR	ADATIO	N %	<u> </u>	DN N	۵۲	PIEZOMETER, STANDPIPE, THERMISTOR
DEPTH SCALE		EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY %	20	40 R CON	6 NTENT	Pocket F	Pen - 🔳 0 NT	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
_	0		Ground Surface (ML) SILT, some sand, some		0.00															
		Dug by Hand Shovel	(ML) SILT, some sand, some organics (roots), some gravel; brown to black, moist. (SP) SAND, fine to coarse, trace to some silt, some gravel to gravelly, some organics (roots), with cobbles; brown; moist. - less roots encountered below approximately 0.6 m. End of Test Pit.		0.00															
ATIONALIM Outputhom:80_1ESIMI WITH MICIO Tempare:1.							And a second second			5.0										
Z	DEPTH SCALE LOGGED: TM 1 : 40 CHECKED: AC																			

	PROJECT No.: 13-1447-0516 / 7000 / 7300 RECORD OF TEST PIT: TP14-09 SHEET 1 OF 1																		
PF	ROJEC	City of Nanaimo CT: Colliery Dams ON: Walkway of Spillway						EXC	CAVAT	ION DA	.TE: Apr	ril 01, 20	14					DAT	UM: NAD 83
		Siv. Walkway of Spillway				IN	ICLII	NATION	1: -90°										
щ	z	SOIL PROFILE			SAN	IPLE	s	SHEAR Cu, kPa	STREN	IGTH r	nat V. + rem V.⊕	Q - ● U - O	GR	ADATIO	N %		D N N	ں _	PIEZOMETER, STANDPIPE, THERMISTOR
DEPTH SCALE METRES	EXCAVATION METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER		RECOVERY %	20	TER CO	0 é ONTENT	Pocket 50 8 PERCE	Pen - 📕 30	GRAVEL	SAND	FINES	PLASTICITY	FROZEN GROUND DESCRIPTION	ADDITIONAL LAB. TESTING	INSTALLATION OR SEEPAGE OBSERVATION
— o		Ground Surface POSSIBLE FILL - (SP) gravelly	×	> 0.00			_												
_		SAND, fine to coarse gravel, some silt to silty, some organics (roots), with	X	0.23															-
-	Dug by Hand Shovel	 cobbles; brown-grey; moist. (SP/GP) gravelly SAND to SAND and GRAVEL, fine to coarse, trace to 	000 000 100																-
	vd gud Sho	some silt, with cobbles; brown; moist. - 51 mm thick black organic layer encountered at approximately 0.4 m depth.																	
- 1 -		- less roots encountered below approximately 0.8 m.	6.00 6.00	1.12			_												
-		- seepage encountered at approximately 1.0 m depth.	/																-
-		End of Test Pit.																	-
-																			-
2																			-
-																			-
-																			-
-																			-
3 -																			-
																			-
-																			-
_																			-
- 4																			
																			-
																			-
																			-
5																			-
) 				1		10.453		N. 18. 2 1. 2	and the second second	14 A 15 2	and the second second								
	: 40	SCALE						E	G Ass	olde ocia	r ites						GGED: T CKED: A		

Annex B Sonic Drilling Core Photos

Box 5 of 11: 12.3 m to 14.0 m (40.5 ft to 46.0 ft)

PROJECT CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.									
TITLE SONIC C BOXES 1 TO 5 O	ORE	-	TOGF		-)			
	PROJEC	T No. 13-	1447-0516	Phase / 7	Task No. 7000	/7300			
	DESIGN	TM	25FEB14	SCALE	NTS	REV.			
Golder	CADD	ТМ	06MAR14						
Golder Associates									
Associates	REVIEW			1		•			

Box 6 of 11: 14.0 m to 14.9 m (46.0 ft to 49.0 ft)

Box 7 of 11: 14.9 m to 15.8 m (49.0 ft to 52.0 ft)

Box 8 of 11: 15.8 m to 18.0 m (52.0 ft to 59.0 ft)

Box 9 of 11: 18.0 m to 19.5 m (59.0 ft to 64.0 ft)

Box 10 of 11: 19.5 m to 20.5 m (64.0 ft to 67.25 ft)

PROJECT CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.									
SONIC CO BOXES 6 TO 10 OF 11	ORE		TOGF						
-70	PROJEC [®]	T No. 13-	1447-0516	Phase / Task No. 7000/7300					
	DESIGN	TM	25FEB14	SCALE NTS REV.					
Golder	CADD	ТМ	06MAR14						
Golder Associates									
	REVIEW								

Box 11 of 11: 20.5 m to 21.0 m (67.25 ft to 69.0 ft)

PROJECT	RY DAM	OF NAN S PARK IAIMO,	- LOWEF	R DAM					
SONIC CO BOXES 11 TO 11 OF 1	ORE	-	TOGF	-					
-70-1	PROJEC	T No. 13-	1447-0516	Phase / Task No. 7000/7300					
	DESIGN	TM	25FEB14	SCALE NTS REV.					
Golder	CADD	ТМ	06MAR14						
Associates CHECK FIGURE C-3									
	REVIEW								

Box 1 of 7: 0.00 m to 4.3 m (0 ft to 14.0 ft)

Box 2 of 7: 4.3 m to 8.8 m (14.0 ft to 29.0 ft)

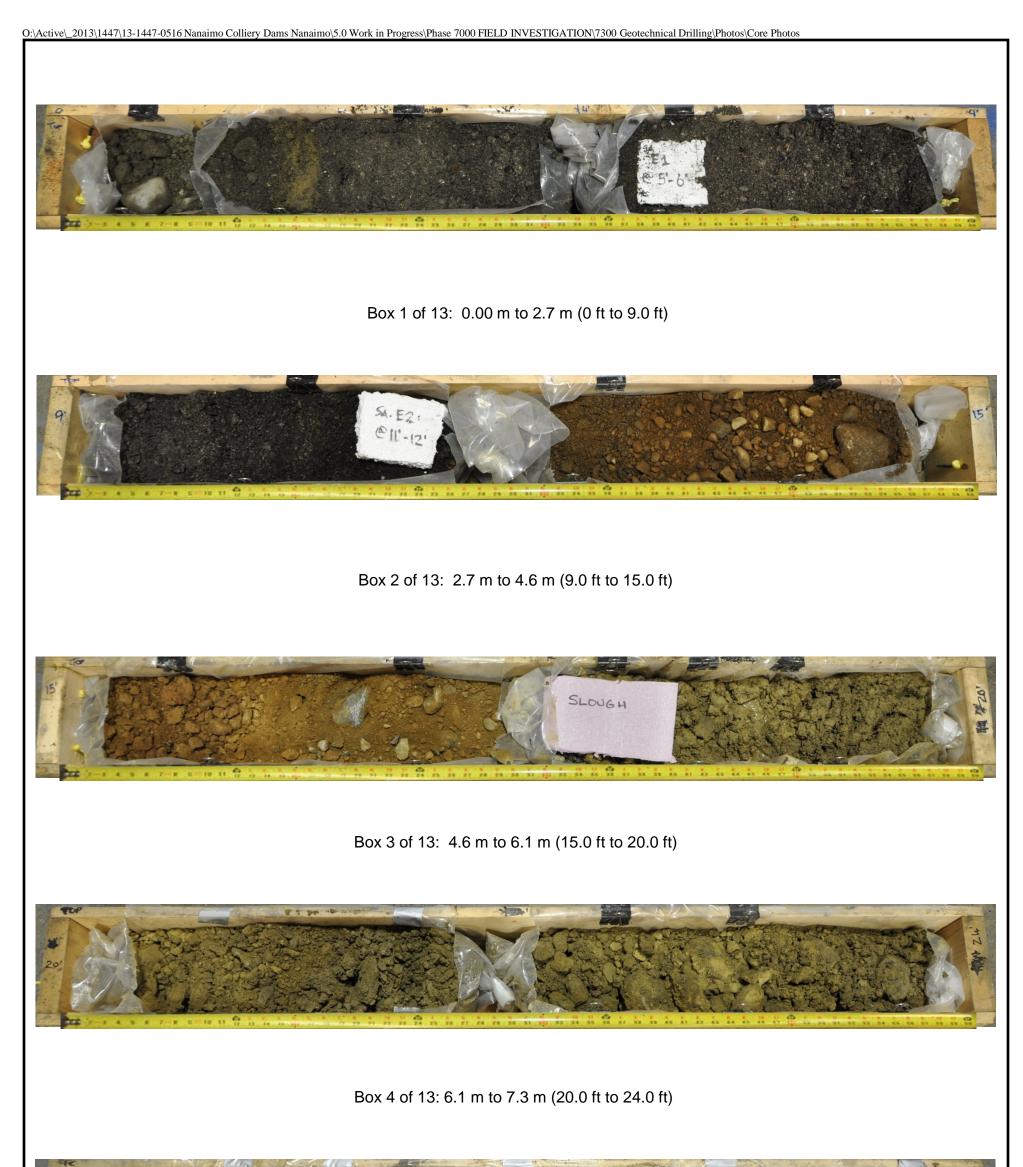
Box 3 of 7: 8.8 m to 11.1 m (29.0 ft to 36.5 ft)

Box 4 of 7: 11.1 m to 14.6 m (36.5 ft to 48.0 ft)

Box 5 of 7: 14.6 m to 17.7 m (48.0 ft to 58.0 ft)

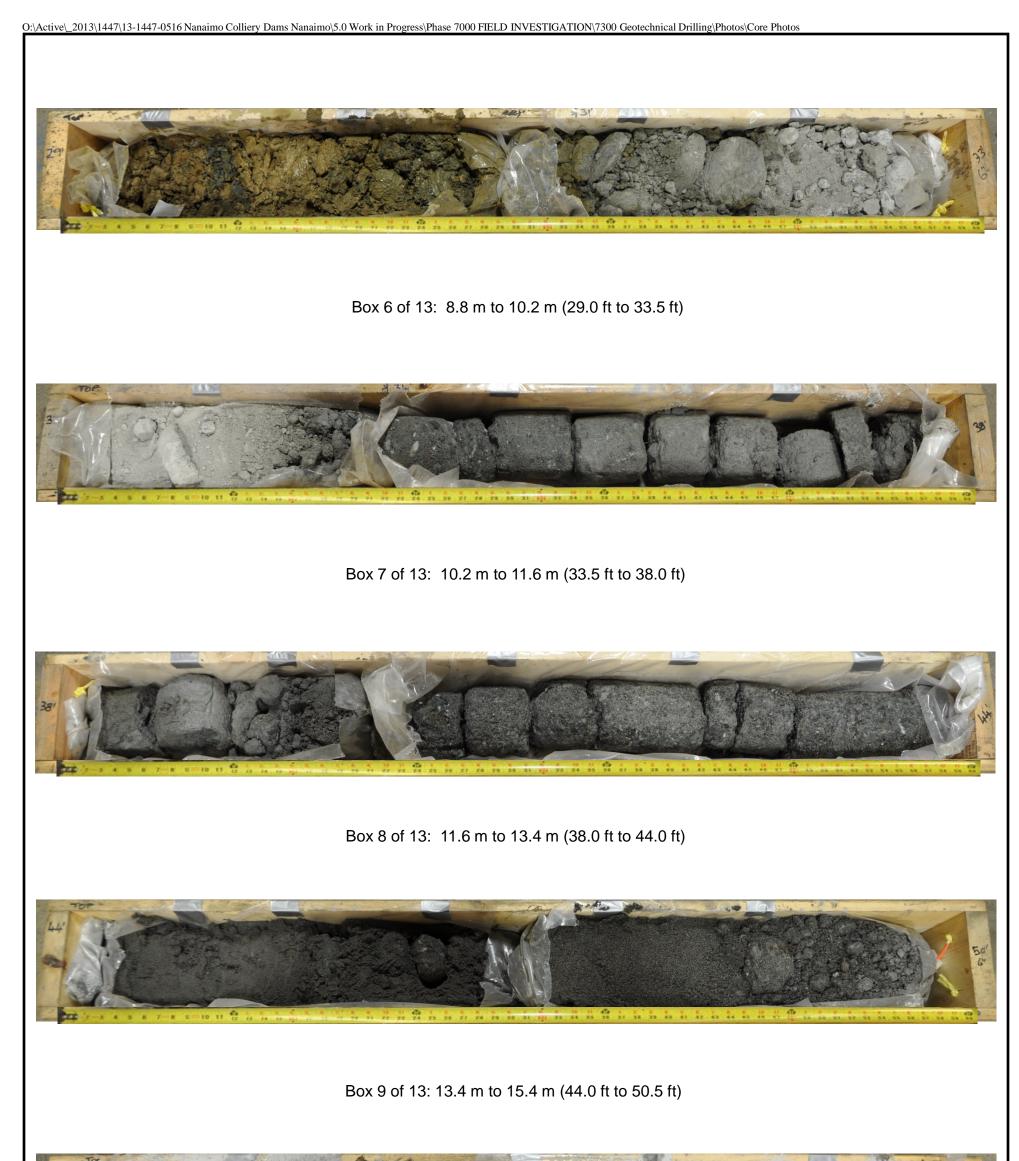
PROJECT CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.											
TITLE SONIC (BOXES 1 TO 5	CORE	-	TOGF		-)					
-74	PROJEC	T No. 13-	1447-0516	Phase /	Task No. 70	00/7300					
	DESIGN	TM	26FEB14	SCALE	NTS	REV.					
Golder	Golder Associates CADD TM 06MAR14 FIGURE C-4										
Associates CHECK FIGURE C-4											
Associate	REVIEW			1							

1 53

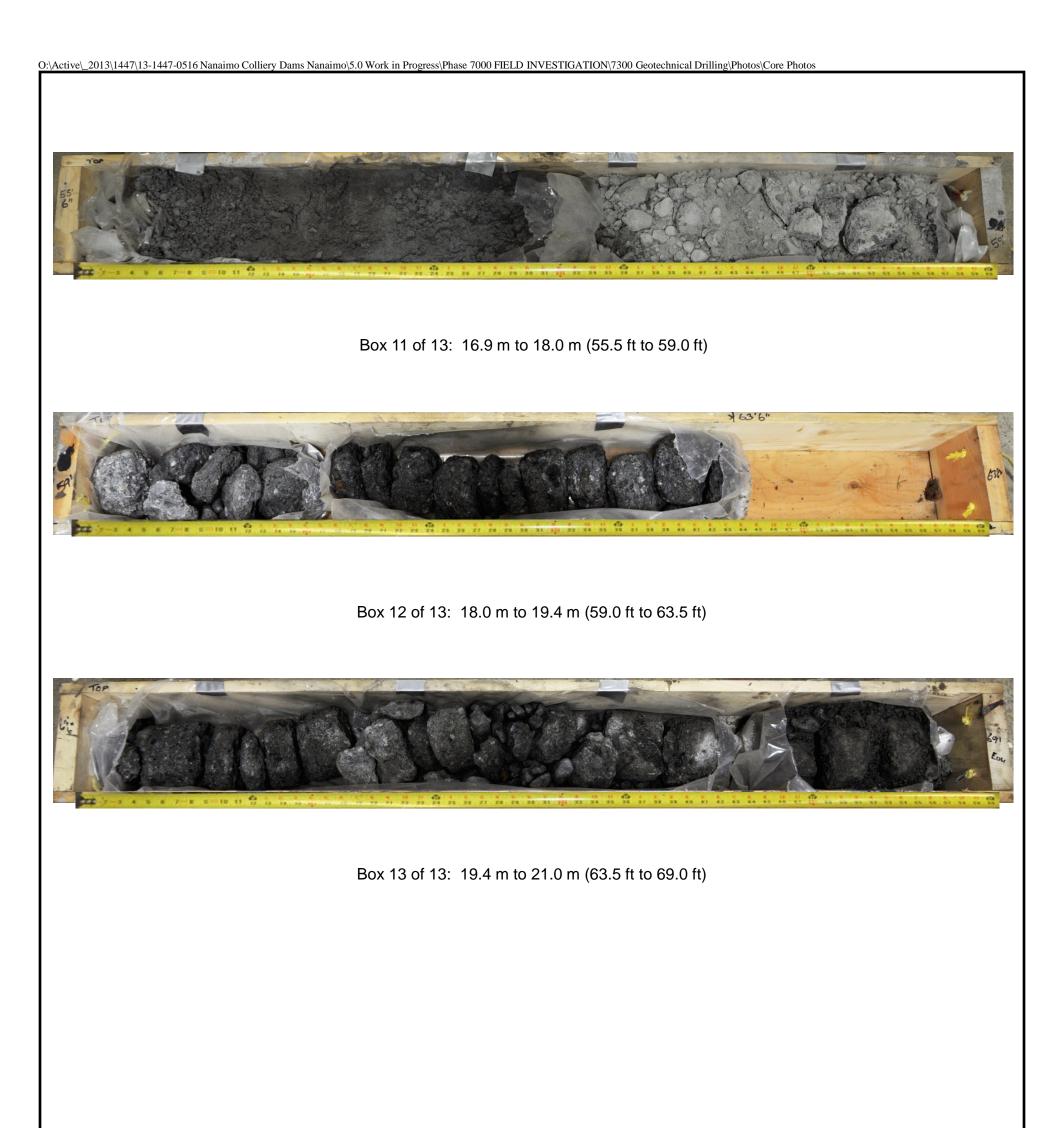


Box 6 of 7: 17.7 m to 20.6 m (58.0 ft to 67.5 ft)

Box 7 of 7: 20.6 m to 22.4 m (67.5 ft to 73.5 ft)


PROJECT	RY DAM	OF NAN S PARM IAIMO,	(– LOWEF	RDAM
SONIC CO BOXES 6 TO 7 OF 7	ORE		TOGF	
-70-1	PROJEC	T No. 13-	1447-0516	Phase / Task No. 7000/7300
	DESIGN	TM	26FEB14	SCALE NTS REV.
Golder	CADD	ТМ	06MAR14	
Associates	CHECK			FIGURE C-5
Associates	REVIEW			

Box 5 of 13: 7.3 m to 8.8 m (24.0 ft to 29.0 ft)


PROJECT CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.									
TITLE SONIC BOXES 1 TO	CORE	-	TOGF		-)			
-70	PROJEC	T No. 13-	1447-0516	Phase /	Fask No. 700	00/7300			
	DESIGN	TM	25FEB14	SCALE	NTS	REV.			
Golder	CADD	ТМ	06MAR14						
Golder Associates									
ASSUCIAL	REVIEW			ייין					

Box 10 of 13: 15.4 m to 16.9 m (50.5 ft to 55.5 ft)

PROJECT CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.										
TITLE SONIC C BOXES 6 TO 10 OF	ORE		TOGF							
-70	PROJEC [®]	T No. 13-	1447-0516	Phase / Task No. 7000/7300						
	DESIGN	TM	25FEB14	SCALE NTS REV.						
Golder	CADD	ТМ	06MAR14							
Golder Associates										
	REVIEW									

PROJECT CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.										
TITLE SONIC CC BOXES 11 TO 13 OF 1	DRE	-	TOGF	-						
	PROJEC	T No. 13-	1447-0516	Phase / Task No. 7000/7300						
	DESIGN	TM	25FEB14	SCALE NTS REV.						
Golder	CADD	ТМ	06MAR14							
Associates CHECK FIGURE C-8										
	REVIEW									

Annex C Laboratory Testing Results

GOLDER ASSOCIATES LTD. ATTN: Jenna Girdner # 500 - 4260 Still Creek Drive Burnaby na NA Date Received:14-MAR-14Report Date:31-MAR-14 13:49 (MT)Version:FINAL

Client Phone: --

Certificate of Analysis

Lab Work Order #: L1432674

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 13-1447-0516/7000/7300 10-368653

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Version: FINAL L1432674-2 L1432674-1 L1432674-3 L1432674-4 L1432674-5 Sample ID Description Soil Soil Soil Soil Soil Sampled Date 13-MAR-14 13-MAR-14 13-MAR-14 13-MAR-14 13-MAR-14 Sampled Time SH14-04 G1 SH14-04 G3 SH14-05 G2 SH14-05 G3 SH14-06 G1 Client ID Grouping Analyte SOIL **Physical Tests** Grain Size Curve SEE SEE SEE SEE SEE ATTACHED ATTACHED ATTACHED ATTACHED ATTACHED pH (1:9) (pH) 8.02 7.33 Specific Gravity (kg/L) 0.950 1.93 Leachable Anions Sulfate (SO4) (mg/L) 28.3 24.6 & Nutrients Sulfate (SO4) (mg/kg) 255 222

L1432674 CONTD.... PAGE 2 of 4 31-MAR-14 13:49 (MT)

31-MAR-14 13:49 (MT) ALS ENVIRONMENTAL ANALYTICAL REPORT Version: FINAL L1432674-6 Sample ID Description Soil Sampled Date 13-MAR-14 Sampled Time SH14-06 G2 Client ID Grouping Analyte SOIL **Physical Tests** Grain Size Curve SEE ATTACHED pH (1:9) (pH) 6.52 Specific Gravity (kg/L) 1.32 Leachable Anions Sulfate (SO4) (mg/L) 31.6 & Nutrients Sulfate (SO4) (mg/kg) 284

L1432674 CONTD.... PAGE 3 of 4

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
GRAIN SIZE-SK	Soil	Grain Size Analysis	SSIR-51 METHOD 3.2.1
Particle size distributic the pipette sedimentat			ing is performed for coarse particles, wet sieving for sand particles and
Reference:			
Burt, R. (2009). Soil S	,	aboratory Methods Manual. Soil Survey	Investigations Report No. 5. Method 3.2.1.2.2. United States
Burt, R. (2009). Soil S	,	,	Investigations Report No. 5. Method 3.2.1.2.2. United States APHA 4500 H-Electrode on 1:9 extr.
Burt, R. (2009). Soil S Department of Agricul	ture Natural Res	ources Conservation Service.	
Burt, R. (2009). Soil S Department of Agricul PH-1:9-CL	ture Natural Res Soil	purces Conservation Service. pH (1:9 H2O)	APHA 4500 H-Electrode on 1:9 extr.
Burt, R. (2009). Soil S Department of Agricul PH-1:9-CL SO4-1:9-CL SPECGRAV-CL	ture Natural Res Soil Soil Soil	purces Conservation Service. pH (1:9 H2O) Sulfate (1:9 H2O)	APHA 4500 H-Electrode on 1:9 extr. AEUB Guide 58-29.7 - Ion Chromatography CSSS-Gravimetric

Eaboratory Demittor Obac	East and y Eostation
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

10-368653

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

			Workorder:	L143267	' 4	Report Date: 3 ⁴	1-MAR-14	Pa	ige 1 of 2
Client:	# 500 - 42 Burnaby		-						
Contact:	Jenna Gi	rdner							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-1:9-CL		Soil							
Batch WG1851786- pH (1:9)	R2813311 1 DUP		L1432674-6 6.52	6.59	J	рН	0.07	0.3	31-MAR-14
SO4-1:9-CL		Soil							
Batch	R2810255								
WG1849078- Sulfate (SO4			L1432674-6 31.6	31.5		mg/L	0.3	30	24-MAR-14
WG1849078- Sulfate (SO4				103.4		%		70-130	24-MAR-14
WG1849078- Sulfate (SO4				<6.0		mg/L		6	24-MAR-14
SPECGRAV-CL		Soil							
Batch WG1848487- Specific Grav			L1432674-6 1.32	1.31		kg/L	0.8	20	24-MAR-14

Quality Control Report

Workorder: L1432674

Report Date: 31-MAR-14

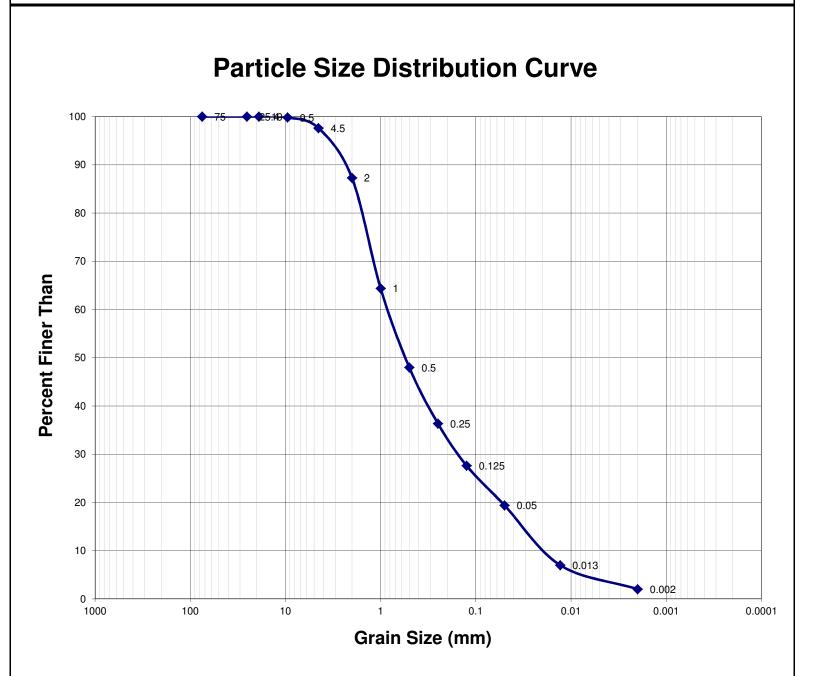
Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.

Hold Time Exceedances:

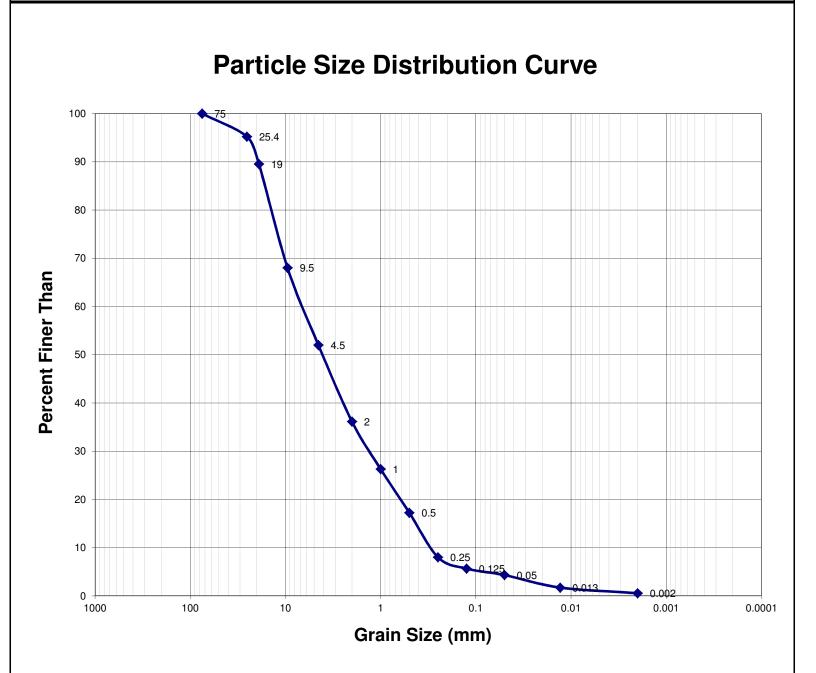

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

819-58th Street, Saskatoon, SK S7K 6X5

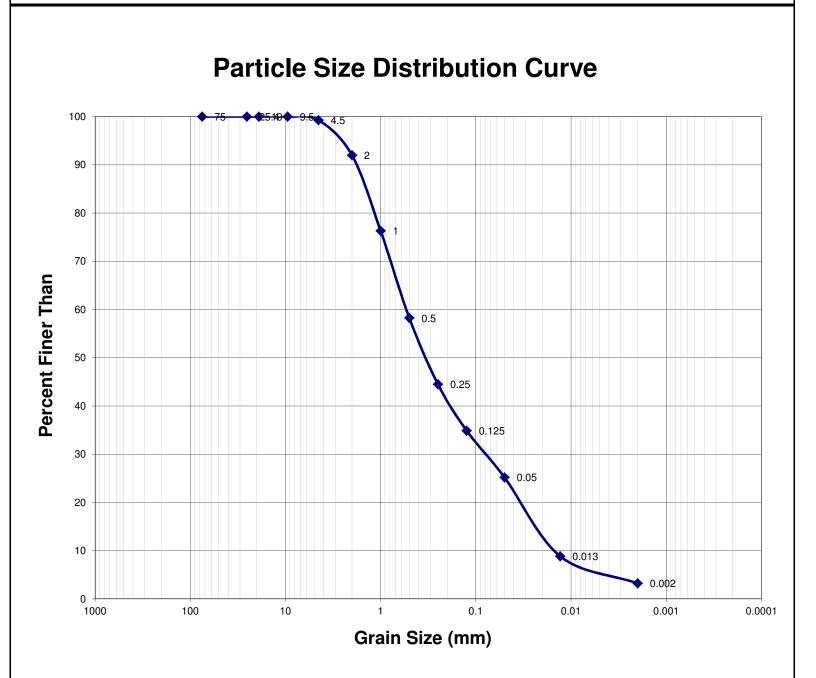


Summary of Results

Unified Soil Classification System (USCS)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	2	
Coarse Sand	2.0mm - 4.75mm	10	
Medium Sand	0.425mm - 2.0mm	39	
Fine Sand	0.075mm - 0.425mm	26	
Fines	< 0.075mm	22	

Canadian Soil Survey Committee (CSSC)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	2mm - 3"	13	
Sand	0.05mm - 2mm	68	
Silt	0.002mm - 0.05mm	17	
Clay	< 0.002mm	2	
Texture	Loamy sand		

819-58th Street, Saskatoon, SK S7K 6X5

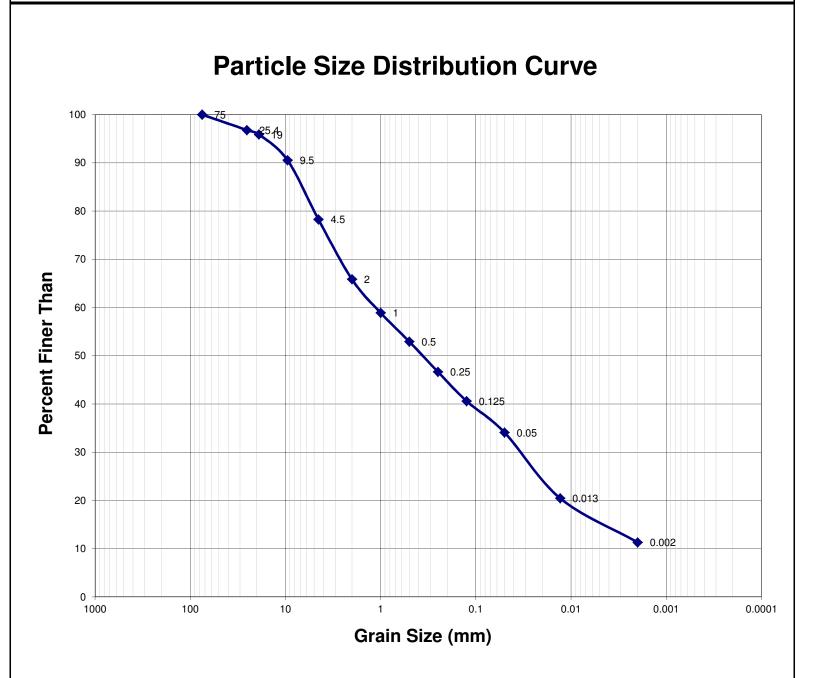


Summary of Results

Unified Soil Classification System (USCS)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	47	
Coarse Sand	2.0mm - 4.75mm	17	
Medium Sand	0.425mm - 2.0mm	19	
Fine Sand	0.075mm - 0.425mm	12	
Fines	< 0.075mm	5	

Canadian Soil Survey Committee (CSSC)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	2mm - 3"	64	
Sand	0.05mm - 2mm	32	
Silt	0.002mm - 0.05mm	4	
Clay	< 0.002mm	1	
Texture	Sand		

819-58th Street, Saskatoon, SK S7K 6X5

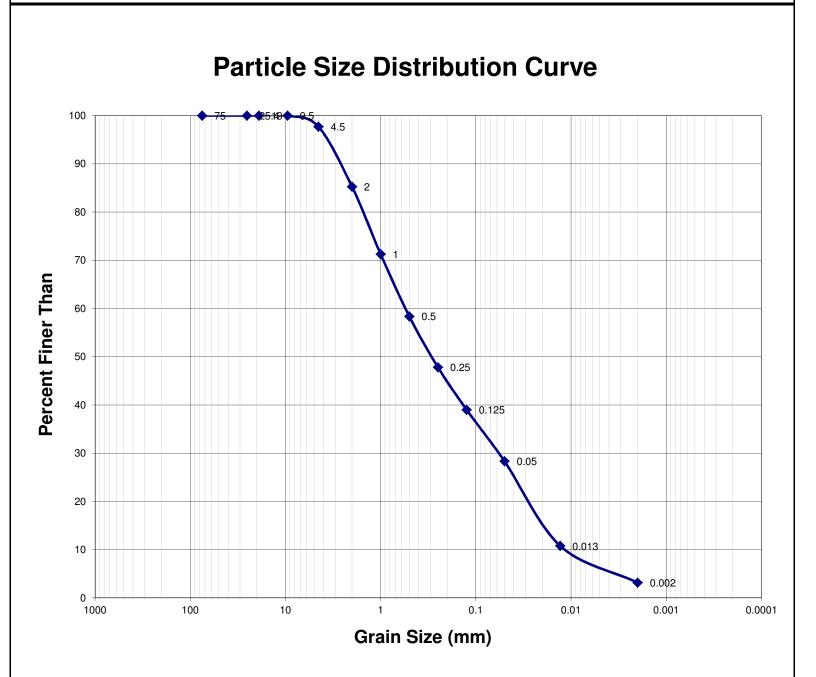


Summary of Results

Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	4.75mm - 3"	1
Coarse Sand	2.0mm - 4.75mm	7
Medium Sand	0.425mm - 2.0mm	34
Fine Sand	0.075mm - 0.425mm	30
Fines	< 0.075mm	28

Canadian Soil Survey Committee (CSSC)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	2mm - 3"	8	
Sand	0.05mm - 2mm	67	
Silt	0.002mm - 0.05mm	22	
Clay	< 0.002mm	3	
Texture	Sandy loam		

819-58th Street, Saskatoon, SK S7K 6X5

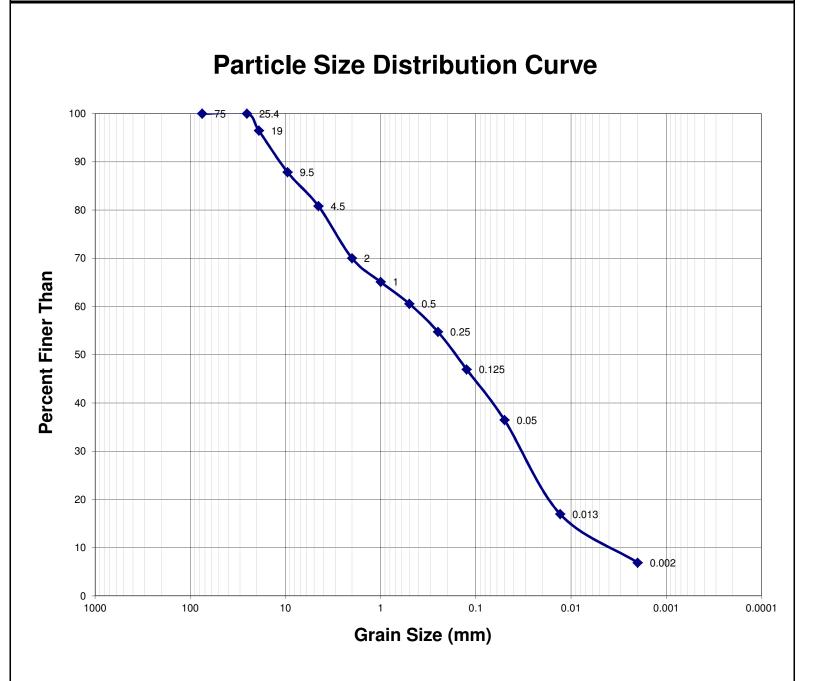


Summary of Results

Unified Soil Classification System (USCS)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	21	
Coarse Sand	2.0mm - 4.75mm	13	
Medium Sand	0.425mm - 2.0mm	13	
Fine Sand	0.075mm - 0.425mm	17	
Fines	< 0.075mm	36	

Canadian Soi	I Survey Committee (C	SSC)
Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	34
Sand	0.05mm - 2mm	32
Silt	0.002mm - 0.05mm	23
Clay	< 0.002mm	11
Texture	Loam	

819-58th Street, Saskatoon, SK S7K 6X5



Summary of Results

Unified Soil Classification System (USCS)										
Size Class	Size Range	Wt. (%)								
Cobbles	> 3"	0								
Gravel	4.75mm - 3"	2								
Coarse Sand	2.0mm - 4.75mm	13								
Medium Sand	0.425mm - 2.0mm	27								
Fine Sand	0.075mm - 0.425mm	26								
Fines	< 0.075mm	32								

Canadian Soi	I Survey Committee (C	Canadian Soil Survey Committee (CSSC)								
Size Class	Size Range	Wt. (%)								
Cobbles	> 3"	0								
Gravel	2mm - 3"	15								
Sand	0.05mm - 2mm	57								
Silt	0.002mm - 0.05mm	25								
Clay	< 0.002mm	3								
Texture	Sandy loam									

819-58th Street, Saskatoon, SK S7K 6X5

Summary of Results

Unified Soil Classification System (USCS)										
Size Class	Size Range	Wt. (%)								
Cobbles	> 3"	0								
Gravel	4.75mm - 3"	19								
Coarse Sand	2.0mm - 4.75mm	11								
Medium Sand	0.425mm - 2.0mm	9								
Fine Sand	0.075mm - 0.425mm	21								
Fines	< 0.075mm	40								

Canadian Soi	I Survey Committee (C	SSC)
Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	30
Sand	0.05mm - 2mm	34
Silt	0.002mm - 0.05mm	30
Clay	< 0.002mm	7
Texture	Loam	

..

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC # 10-368653

Page <u>2</u> of <u>2</u>

Report To				Report Fo	rmat / Distributi	on		Service Red	quest	ed (Rush	n for routi	ne analysi	s subje	et to avai	lability)	
Company:	Golder Associates L	_td.		☑ Standard	I 🗌 Other			Regular (S	itandar	Turnaroa	und Times	- Business	Days)			
Contact:	Jenna Girdner	· ·	· · · · · · · ·	PDF	Excel	Digital		O Priority (2	4 Busir	ess Days)) • 50% Su	scharge - (ontact A	LS to Con	firm TAT	
Address:	500-4260 Still Creel	k Drive Burnaby	BC V5C 6C6	Email 1:	jenna gir <u>dner@</u>	golder.com		C Emergence	y (1-2 F	lus. Days)	- 100% S	urcharge -	Contact .	ALS to Co	nfirm TAT	
			·····	Email 2:	acrowley@gold	er.com		O Same Day	or Wee	kend Eme	ergency - (Contact ALS	to Conf	irm TAT		
Phone:	604-297-2045	Fax:	604-298-5253	Email 3:	·						Anal	ysis Rec	uest			
nvoice To	Same as Report ?	🗸 Yes	No No	Client / Pr	oject Informatio	'n		Please	indica	ate belo	w Filtere	d, Prese	rved or	both (F	, P, F/P)	
lardcopy of I	nvoice with Report?	🗸 Yes	No No	Job #:	13-1447-0516/7	000/7300										
Company:				PO / AFE:				j,								
Contact:				LSD:				a d	=							
Address:								tion	in soil							a di si
hone:		Fax:		Quote #:				× rada								tai
Lab V	Vork Order #	1 .		ALS		L .		1 5 5 5 V	content							
(lab	o use only)			Contact:		Sampler:		s vit SIZ	- m				1			
Sample		Sample I	dentification		Date	Time		detailed particle size analysis with gradation plot, GRAIN SIZE-SK	ohai							Number of Containers
#	(Th	is description wi	Il appear on the	report)	(dd-mmm-yy)	(hh:mm)	Sample Type	ana GR ana	Sulphate							
	SH14-04 G1	•		-	13/3/2014		Soil	X	Х							
<u> </u>	SH14-04 G3				13/3/2014		Soil	X				-				
	SH14-05 G2				13/3/2014		Soil	X								
· -	SH14-05 G3			· · · · · · · · · · · · · · · · · · ·	13/3/2014		Soil	X	X	i						1
	SH14-06 G1				13/3/2014		Soil	X								
	SH14-06 G2				13/3/2014		Soil	X	X						_	
· ·																
							ļ									+
																┼╌┼╸
			· · · · · · · · · · · · · · · · · · ·	· 									_			++
	<u> </u>										-4-2 (14		Datai			
	Special	Instructions / F	regulations wit	h water or land use (C	CME+resnwate	er Aquatic Lite/i	SU USR - Comme	rcial/AB Tie	r 1 - N	aturai,	etc) / Ha	izardous	Detai	15		
Please individ	dually bag the soil tha	at is retained on		send back to Golder fo o complete all portion		av delav analve	sis Please fill in	this form LF	GIBI	Y						
	Also provid		se of this form	the user acknowledge e ALS location addres	es and agrees w	ith the Terms a	nd Conditions as	provided o	n a se	parate			on ana	lvses.		
	SHIPMENT RELE					ION (lab use onl						RIFICATI			ily)	
Released by	Ma	Date (dd-mmm-yy)		Received by:	Date:	Time:	Temperature:	Verified by			Date		Tim		Obs Yes	ervations / No ?
]				<u> </u>	'i							lt Y€	es add i

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Page of

Report To			,		Report Fo	ormat / Distributio	n		Servi	ce Requ	uest:(Ri	ush subj	oct to a	vailabili	ty - Con	Itact ALS	5 to cor	nfirm TAT	<u> </u>		-
Company:					Standard:	Other (s	pecify):		1	Regula	ar (Stan	dard Tur	naround	Times -	Busines	ss Days)	,		<u> </u>		-
Contact;					Select: PD		Digital	Fax		Priority	y(2-4 Bu	siness C)ays)-50'	% surch	arge - C	ontacl A	LS to cc	onfirm TA	.π	• •	-
Address:				• • • •	Email 1:			199										S lo coni			-
					Email 2:					Same	Day or V	Neekend	d Ernergi	ency - C	ontact A	LS to co	Aľ mila	AT			
Phone:		Fax:			i	• · ·								Analy	sis Re	quest	Ł	·			
Invoice To	Same as Report ? (circle	e) Yes or No	(if No, provide d	letails)	Client / Pr	oject Information		•			(Indica	ate Filt	lered o	or Pres	served	I. F/P)			
	Copy of Invoice with Rep	port? (circle) \	res or No		Job #:		i biri		\square	\square	∇	\square	\square	\square	\square	\square	\geq	\square	$\overline{}$		
Company:				· · ·	PO/AFE;		•						· ·					Ĩ			
Contact:		<u>.</u>			LSD:													1			
Address:							· · · · · · · · · · · · · · · · · · ·	. Ju									ł			S S	
Phone:		Fax:	t y		Quote #:	• •	5 A. 2 - 4													laine	
Lab Work O	rder # (lab use only)	No Partie	i e	Green and a second	ALS Contact:		Sampler:			ľ		,		:						Number of Containers	
Sample #	(This	-	dentification	report)	<u>ب</u>	Date (dd-mmm-yy)	Time ((hh:mm)	Sample Type												Vumber	
									+		1										-
• 34.			· · · ·	· · · · ·		:												÷+	-		-
A			··· ·			. به						1									-
1	-	· · · · · ·							1 -		1	<u>├</u> ──	i				-+				-
. 15 .					•	···				<u> </u>	+	<u> </u>						+			-
· .						1					+						-+				-
·•				<u> </u>							<u> </u>	+				<u> </u>					-
				•		· ·	· · · ·		+												-
-									+			-				 	\rightarrow				-
												<u> </u>									-
· · ·			,					,			+						+		<u> </u>		-
\$1 v.	· · · · · · · · · · · · · · · · · · ·	<i>1</i> =			<u> </u>	······	· · · · · · · · · · · · · · · · · · ·				<u>,</u>					-+					-
м _{нулд}	Special	Instructions /	Regulation wit	h water or lan	nd use (CC)	ME- Freshwater A	L quatic Life/BC (. I CSR-Commercial/A	BTie	r 1-Na	tural/	ETCU	/ Haza	rdous	L Deta		•••	<u>.</u>		<u> </u>	-
	\frown			•		• • •							- TIÇINCI								-
	Dami	bles	rece	livea	t w	nthou	7 t	ofC													
	J		Fallure f	o complete al	Il portions o	of this form may o	lelay analysis.	Please fill in this f	orm L	EGIBL	LY.						40		· · · ·		-
4			form the user a	acknowledges				as specified on th	e bac	k page	e of th	ne whi	te - re	port o	юру.						
<u>к</u> , ² т	SHIPMENT RELEA					IPMENT RECEPT	ION (lab use only	0.				SHIPN	AENT.	VERIF	ICATI	ION (la	ab us∉	a only)			
Released by:		Date:	Time:	Received	by:	Date: Mar14	Time:	Temperature:	Veri	fied by	/: 		Date	:		Time:		ľ	Observa Yes / No	o 7	-
						1	16.00	121.2.00											If Yes a		-
RE	FER TO BACK PAGE FOR	ALS LOCATIONS	S AND SAMPLIN	5 INFORMATIO	N		WHITE - LAB	IORATORY COPY	YELI	- WO	CLIEN	т сор	Ϋ́				ſ	GENF	18.01 F	ront	

GOLDER ASSOCIATES LTD. ATTN: Jim Laidlaw # 500 - 4260 Still Creek Drive Burnaby BC V5C 6C6 Date Received:20-FEB-14Report Date:18-MAR-14 14:15 (MT)Version:FINAL REV. 3

Client Phone: 604-298-6623

Certificate of Analysis

Lab Work Order #: L1424625

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 13-1447-0516

Comments: The composite sample in this report was created with equal volumes of the following samples:

L1421658 - 1, 2, 3, 4, 5 L1423043 - 1, 2, 3 L1423044 - 1, 2

11-MAR-2014 SPLP Arsenic has been re-processed to provide a lower detection limit. 18-MAR-2014 Grain Size Analysis added, see end of report.

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1424625 CONTD.... PAGE 2 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

			-	 	 FINAL RE
	Sample ID Description Sampled Date Sampled Time Client ID	L1424625-1 Soil COMPOSITE			
Grouping	Analyte				
SOIL	,				
Physical Tests	Grain Size Curve	SEE			
-		ATTACHED			
	Moisture (%)	19.2			
	pH (1:2 soil:water) (pH)	8.17			
Metals	Aluminum (Al) (mg/kg)	15400			
	Antimony (Sb) (mg/kg)	0.67			
	Arsenic (As) (mg/kg)	49.6			
	Barium (Ba) (mg/kg)	229			
	Beryllium (Be) (mg/kg)	0.51			
	Bismuth (Bi) (mg/kg)	<0.20			
	Cadmium (Cd) (mg/kg)	0.108			
	Calcium (Ca) (mg/kg)	34000			
	Chromium (Cr) (mg/kg)	31.1			
	Cobalt (Co) (mg/kg)	10.1			
	Copper (Cu) (mg/kg)	47.5			
	Iron (Fe) (mg/kg)	20200			
	Lead (Pb) (mg/kg)	8.56			
	Lithium (Li) (mg/kg)	19.1			
	Magnesium (Mg) (mg/kg)	2920			
	Manganese (Mn) (mg/kg)	294			
	Mercury (Hg) (mg/kg)	0.206			
	Molybdenum (Mo) (mg/kg)	2.76			
	Nickel (Ni) (mg/kg)	58.3			
	Phosphorus (P) (mg/kg)	326			
	Potassium (K) (mg/kg)	740			
	Selenium (Se) (mg/kg)	0.49			
	Silver (Ag) (mg/kg)	<0.10			
	Sodium (Na) (mg/kg)	280			
	Strontium (Sr) (mg/kg)	215			
	Thallium (TI) (mg/kg)	0.148			
	Tin (Sn) (mg/kg)	<2.0			
	Titanium (Ti) (mg/kg)	731			
	Uranium (U) (mg/kg)	0.610			
	Vanadium (V) (mg/kg)				
	Zinc (Zn) (mg/kg)	101			
SPLP Metals	Extraction Solution Initial pH (pH)	33.4			
	Final pH (pH)	4.99			
	·	7.67			

L1424625 CONTD.... PAGE 3 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date	L1424625-1 Soil			
	Sampled Time Client ID	COMPOSITE			
Grouping	Analyte				
SOIL					
SPLP Metals	Aluminum (AI)-Leachable (mg/L)	<0.20			
	Antimony (Sb)-Leachable (mg/L)	<0.20			
	Arsenic (As)-Leachable (mg/L)	0.00309			
	Barium (Ba)-Leachable (mg/L)	<0.50			
	Beryllium (Be)-Leachable (mg/L)	<0.0050			
	Bismuth (Bi)-Leachable (mg/L)	<0.20			
	Boron (B)-Leachable (mg/L)	<0.10			
	Cadmium (Cd)-Leachable (mg/L)	<0.010			
	Calcium (Ca)-Leachable (mg/L)	134			
	Chromium (Cr)-Leachable (mg/L)	<0.050			
	Cobalt (Co)-Leachable (mg/L)	<0.010			
	Copper (Cu)-Leachable (mg/L)	<0.010			
	Iron (Fe)-Leachable (mg/L)	<0.030			
	Lead (Pb)-Leachable (mg/L)	<0.050			
	Lithium (Li)-Leachable (mg/L)	<0.010			
	Magnesium (Mg)-Leachable (mg/L)	1.47			
	Manganese (Mn)-Leachable (mg/L)	<0.0050			
	Mercury (Hg)-Leachable (mg/L)	<0.0010			
	Molybdenum (Mo)-Leachable (mg/L)	<0.030			
	Nickel (Ni)-Leachable (mg/L)	<0.050			
	Phosphorus (P)-Leachable (mg/L)	<0.30			
	Potassium (K)-Leachable (mg/L)	<2.0			
	Selenium (Se)-Leachable (mg/L)	<0.20			
	Silicon (Si)-Leachable (mg/L)	3.09			
	Silver (Ag)-Leachable (mg/L)	<0.050			
	Sodium (Na)-Leachable (mg/L)	<2.0			
	Strontium (Sr)-Leachable (mg/L)	0.437			
	Thallium (TI)-Leachable (mg/L)	<0.20			
	Tin (Sn)-Leachable (mg/L)	<0.030			
	Titanium (Ti)-Leachable (mg/L)	0.014			
	Vanadium (V)-Leachable (mg/L)	<0.030			
	Zinc (Zn)-Leachable (mg/L)	<0.10			
Hydrocarbons	EPH10-19 (mg/kg)	1210			
	EPH19-32 (mg/kg)	1620			
	LEPH (mg/kg)	1200			
	HEPH (mg/kg)	1610			

L1424625 CONTD.... PAGE 4 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

				Vers	ion: FINAL	REV
	Sample ID Description Sampled Date	L1424625-1 Soil				
	Sampled Time Client ID	COMPOSITE				
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.20				
-	Acenaphthylene (mg/kg)	оли 0.40				
	Anthracene (mg/kg)	0.429				
	Benz(a)anthracene (mg/kg)	0.438				
	Benzo(a)pyrene (mg/kg)	0.163				
	Benzo(b)fluoranthene (mg/kg)	0.364				
	Benzo(g,h,i)perylene (mg/kg)	0.088				
	Benzo(k)fluoranthene (mg/kg)	олы 0.060				
	Chrysene (mg/kg)	0.384				
	Dibenz(a,h)anthracene (mg/kg)	<0.050				
	Fluoranthene (mg/kg)	0.393				
	Fluorene (mg/kg)	оло со станование со				
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.055				
	2-Methylnaphthalene (mg/kg)	14.5				
	Naphthalene (mg/kg)	10.9				
	Phenanthrene (mg/kg)	2.85				
	Pyrene (mg/kg)	0.497				
	Surrogate: Acenaphthene d10 (%)	109.5				
	Surrogate: Chrysene d12 (%)	71.8				
	Surrogate: Naphthalene d8 (%)	93.1				
	Surrogate: Phenanthrene d10 (%)	81.5				
		1	1	1	1	

L1424625 CONTD.... PAGE 5 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

				vers	ion:	FINAL RE
	Sample ID Description Sampled Date Sampled Time Client ID	L1424625-1 Soil COMPOSITE				
Grouping	Analyte					
WASTE						
Polycyclic Aromatic Hydrocarbons	Acenapthene (ug/L)	<0.020				
	Acenaphthylene (ug/L)	<0.020				
	Anthracene (ug/L)	<0.020				
	Benzo(a)anthracene (ug/L)	<0.020				
	Benzo(a)pyrene (ug/L)	<0.010				
	Benzo(b)fluoranthene (ug/L)	<0.020				
	Benzo(g,h,i)perylene (ug/L)	<0.020				
	Benzo(k)fluoranthene (ug/L)	<0.020				
	Chrysene (ug/L)	<0.020				
	Dibenzo(ah)anthracene (ug/L)	<0.020				
	Fluoranthene (ug/L)	<0.020				
	Fluorene (ug/L)	<0.020				
	Indeno(1,2,3-cd)pyrene (ug/L)	<0.020				
	1-Methylnaphthalene (ug/L)	0.026				
	2-Methylnaphthalene (ug/L)	0.020				
	Naphthalene (ug/L)	0.046				
	Phenanthrene (ug/L)	0.040				
	Pyrene (ug/L)	<0.020				
	Surrogate: 2-Fluorobiphenyl (%)	87.2				
	Surrogate: d14-Terphenyl (%)	98.0				
		90.0				

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Calcium (Ca)-Leachable	MS-B	L1424625-1	
Matrix Spike	Magnesium (Mg)-Leachable	MS-B	L1424625-1	
Matrix Spike	Silicon (Si)-Leachable	MS-B	L1424625-1	
Matrix Spike	Strontium (Sr)-Leachable	MS-B	L1424625-1	

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample

Detection Limit Adjusted due to sample matrix effects.

MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
EPH-TUMB-FID-VA	Soil	EPH in Solids by Tumbler and GCFID	BC MOE EPH GCFID

Analysis is in accordance with BC MOE Lab Manual method "Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil samples are extracted with a 1:1 mixture of hexane and acetone using a rotary extraction technique modified from EPA 3570 prior to gas chromatography with flame ionization detection (GC-FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

GRAIN SIZE-SK Soil Grain Size Analysis

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

Reference:

Burt, R. (2009). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 5. Method 3.2.1.2.2. United States Department of Agriculture Natural Resources Conservation Service.

HG-SPLP-CVAFS-VA Soil Mercury by CVAFS (SPLP)

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1312, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using water adjusted to pH 5.0 or pH 4.20 (Depending of the sampling location relative to the Mississippi river) by adding drops of 60/40 weight percent mixture of sulfuric and nitric acids. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and analysed using atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

HG-WW-200.2-CVAF-VA Soil

Hg in Soil by CVAFS

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, sieved (wet sample) through a 2 mm (10 mesh) sieve, and a representative subsample of the material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

LEPHs and HEPHs LEPH/HEPH-CALC-VA Soil

Light and Heavy Extractable Petroleum Hydrocarbons in Solids. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated

by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene. Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method

"Extractable Petroleum Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

MET-SPLP-ICP-VA Metals by ICPOES (SPLP) Soil

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1312, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using water adjusted to pH 5.0 or pH 4.20 (Depending of the sampling location relative to the Mississippi river) by adding drops of 60/40 weight percent mixture of sulfuric and nitric acids. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter and analyzed using inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-SPLP-MS-VA

Soil Metals by ICPMS (SPLP) EPA 1312/6020A

EPA 1312/6010B

EPA 200 2/245 7

BC MOE LABORATORY MANUAL (2005)

EPA 1312/245.7

SSIR-51 METHOD 3.2.1

Reference Information

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1312, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using water adjusted to pH 5.0 or pH 4.20 (Depending of the sampling location relative to the Mississippi river) by adding drops of 60/40 weight percent mixture of sulfuric and nitric acids. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and analysed using inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-WW-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS

EPA 200.2/6020A

ASTM D2974-00 Method A

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, sieved (wet sample) through a 2 mm (10 mesh) sieve, and a representative subsample of the material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MOISTURE-SIEVE-VA Soil Moisture for CSR Metals Calculations

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

MOISTURE-VA	Soil	Moisture content	ASTM D2974-00 Method A
-------------	------	------------------	------------------------

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PAH-SPLP-WT	Waste	Leachable PAH for O.Reg 153/04	SW846 8270
PAH-TMB-H/A-MS-VA	Soil	PAH - Rotary Extraction (Hexane/Acetone)	EPA 3570/8270

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-WW-1:2-DI-MAN-VA Soil pH in Soil (1:2 Soil:Water Ext.) (WET)

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the wet sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water, where the samples moisture is accounted for. The pH of the solution is then measured using a standard pH probe.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L1424625	s Re	eport Date:	18-MAR-14	Pa	ige 1 of 13
Oliciti.	# 500 - 42	ASSOCIATES 260 Still Creek E BC V5C 6C6							
Contact:	Jim Laidla	aw							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EPH-TUMB-FID-V	Ά	Soil							
Batch R WG1836681-3 EPH10-19	2796505 IRM		ALS PHC2 R	VI 101.8		%		70-130	27-FEB-14
EPH19-32				102.9		%		70-130	27-FEB-14
WG1836681-1 EPH10-19	МВ			<200		mg/kg		200	27-FEB-14
EPH19-32				<200		mg/kg		200	27-FEB-14
HG-SPLP-CVAFS	-VA	Soil							
	2797307	••••							
WG1835844-2 Mercury (Hg)-I	DUP		L1424625-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	30	26-FEB-14
WG1835844-1 Mercury (Hg)-I	MB Leachable			<0.0010		mg/L		0.001	26-FEB-14
WG1835844-3 Mercury (Hg)-I	-		L1424625-1	100.3		%		70-130	26-FEB-14
HG-WW-200.2-CV	/AF-VA	Soil							
	2797904								
WG1836549-14 Mercury (Hg)	4 CRM		VA-CANMET-	TILL1 96.4		%		70-130	27-FEB-14
WG1836549-1 Mercury (Hg)	5 CRM		VA-NRC-STS	D1 95.4		%		70-130	27-FEB-14
WG1836549-1 Mercury (Hg)	1 MB			<0.0050		mg/kg		0.005	27-FEB-14
WG1836549-12 Mercury (Hg)	2 MB			<0.0050		mg/kg		0.005	27-FEB-14
MET-SPLP-ICP-V	Α	Soil							
Batch R	2797349								
WG1835844-2 Aluminum (Al)		e	L1424625-1 <0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Antimony (Sb)			<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Barium (Ba)-L	eachable		<0.50	<0.50	RPD-NA	mg/L	N/A	30	26-FEB-14
Beryllium (Be)	-Leachabl	е	<0.0050	<0.0050	RPD-NA	mg/L	N/A	30	26-FEB-14
Bismuth (Bi)-L	eachable		<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Boron (B)-Lea	chable		<0.10	<0.10	RPD-NA	mg/L	N/A	30	26-FEB-14
Cadmium (Cd))-Leachab	le	<0.010	<0.010	RPD-NA	mg/L	N/A	30	26-FEB-14
Calcium (Ca)-	Leachable		134	131		mg/L	2.2	30	26-FEB-14
Chromium (Cr)-Leachab	le	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Cobalt (Co)-Le	eachable		<0.010	<0.010	RPD-NA	mg/L	N/A	30	26-FEB-14

	Workorde	er: L142462	5 Re	eport Date: 1	8-MAR-14	Р	age 2 of 13
Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-ICP-VA So	bil						
Batch R2797349							
WG1835844-2 DUP	L1424625-						
Copper (Cu)-Leachable	<0.010	<0.010	RPD-NA	mg/L	N/A	30	26-FEB-14
Iron (Fe)-Leachable	<0.030	<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Lead (Pb)-Leachable	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Lithium (Li)-Leachable	<0.010	0.010	RPD-NA	mg/L	N/A	30	26-FEB-14
Magnesium (Mg)-Leachable		1.47		mg/L	0.1	30	26-FEB-14
Manganese (Mn)-Leachable		<0.0050	RPD-NA	mg/L	N/A	30	26-FEB-14
Molybdenum (Mo)-Leachabl		<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Nickel (Ni)-Leachable	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Phosphorus (P)-Leachable	<0.30	<0.30	RPD-NA	mg/L	N/A	30	26-FEB-14
Potassium (K)-Leachable	<2.0	<2.0	RPD-NA	mg/L	N/A	30	26-FEB-14
Selenium (Se)-Leachable	<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Silicon (Si)-Leachable	3.09	3.10		mg/L	0.2	30	26-FEB-14
Silver (Ag)-Leachable	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Sodium (Na)-Leachable	<2.0	<2.0	RPD-NA	mg/L	N/A	30	26-FEB-14
Strontium (Sr)-Leachable	0.437	0.437		mg/L	0.1	30	26-FEB-14
Thallium (TI)-Leachable	<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Tin (Sn)-Leachable	<0.030	<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Titanium (Ti)-Leachable	0.014	0.014		mg/L	4.4	30	26-FEB-14
Vanadium (V)-Leachable	<0.030	<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Zinc (Zn)-Leachable	<0.10	<0.10	RPD-NA	mg/L	N/A	30	26-FEB-14
WG1835844-1 MB Aluminum (Al)-Leachable		<0.20		mg/L		0.2	26-FEB-14
Antimony (Sb)-Leachable		<0.20		mg/L		0.2	26-FEB-14
Barium (Ba)-Leachable		<0.50		mg/L		0.5	26-FEB-14
Beryllium (Be)-Leachable		< 0.0050		mg/L		0.005	26-FEB-14
Bismuth (Bi)-Leachable		<0.20		mg/L		0.2	26-FEB-14
Boron (B)-Leachable		<0.10		mg/L		0.2	26-FEB-14
Cadmium (Cd)-Leachable		<0.010		mg/L		0.01	26-FEB-14
Calcium (Ca)-Leachable		< 0.050		mg/L		0.05	26-FEB-14
Chromium (Cr)-Leachable		<0.050		mg/L		0.05	26-FEB-14
Cobalt (Co)-Leachable		<0.000		mg/L		0.03	26-FEB-14
Copper (Cu)-Leachable		<0.010		mg/L		0.01	26-FEB-14
Iron (Fe)-Leachable		<0.030		mg/L		0.01	26-FEB-14 26-FEB-14
Lead (Pb)-Leachable		<0.050		mg/L		0.05	26-FEB-14 26-FEB-14

		Workorder:	L142462	5	Report Date: 1	8-MAR-14	Pa	age 3 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-ICP-VA	Soil							
Batch R2797349								
WG1835844-1 MB			0.040					
Lithium (Li)-Leachable			<0.010		mg/L		0.01	26-FEB-14
Magnesium (Mg)-Leachal			<0.10		mg/L		0.1	26-FEB-14
Manganese (Mn)-Leacha			<0.0050		mg/L		0.005	26-FEB-14
Molybdenum (Mo)-Leacha	adie		<0.030		mg/L		0.03	26-FEB-14
Nickel (Ni)-Leachable			<0.050		mg/L		0.05	26-FEB-14
Phosphorus (P)-Leachabl			<0.30		mg/L		0.3	26-FEB-14
Potassium (K)-Leachable			<2.0		mg/L		2	26-FEB-14
Selenium (Se)-Leachable	1		<0.20		mg/L		0.2	26-FEB-14
Silicon (Si)-Leachable			<0.050		mg/L		0.05	26-FEB-14
Silver (Ag)-Leachable			<0.050		mg/L		0.05	26-FEB-14
Sodium (Na)-Leachable			<2.0		mg/L		2	26-FEB-14
Strontium (Sr)-Leachable			<0.0050		mg/L		0.005	26-FEB-14
Thallium (TI)-Leachable			<0.20		mg/L		0.2	26-FEB-14
Tin (Sn)-Leachable			<0.030		mg/L		0.03	26-FEB-14
Titanium (Ti)-Leachable			<0.010		mg/L		0.01	26-FEB-14
Vanadium (V)-Leachable			<0.030		mg/L		0.03	26-FEB-14
Zinc (Zn)-Leachable			<0.10		mg/L		0.1	26-FEB-14
WG1835844-3 MS Aluminum (Al)-Leachable		L1424625-1	106.9		%		70-130	26-FEB-14
Antimony (Sb)-Leachable			103.4		%		70-130	26-FEB-14
Beryllium (Be)-Leachable			101.4		%		70-130	26-FEB-14
Bismuth (Bi)-Leachable			104.2		%		70-130	26-FEB-14
Boron (B)-Leachable			106.8		%		70-130	26-FEB-14
Cadmium (Cd)-Leachable	9		101.8		%		70-130	26-FEB-14
Calcium (Ca)-Leachable			N/A	MS-B	%		-	26-FEB-14
Chromium (Cr)-Leachable	Э		102.9		%		70-130	26-FEB-14
Cobalt (Co)-Leachable			102.9		%		70-130	26-FEB-14
Copper (Cu)-Leachable			105.8		%		70-130	26-FEB-14
Iron (Fe)-Leachable			112.8		%		70-130	26-FEB-14
Lead (Pb)-Leachable			100.5		%		70-130	26-FEB-14
Lithium (Li)-Leachable			112.6		%		70-130	26-FEB-14
Magnesium (Mg)-Leachal	ble		N/A	MS-B	%		-	26-FEB-14
Manganese (Mn)-Leacha			102.3		%		70-130	26-FEB-14
Molybdenum (Mo)-Leach			102.0		%		70-130	26-FEB-14

		Workorder:	L142462	5 R	Report Date: 1	8-MAR-14	Pa	ge 4 of ^r
lest .	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-ICP-VA	Soil							
Batch R2	2797349							
WG1835844-3	MS	L1424625-1						
Nickel (Ni)-Lead			102.1		%		70-130	26-FEB-14
Phosphorus (P)			104.1		%		70-130	26-FEB-14
Potassium (K)-I			112.6		%		70-130	26-FEB-14
Selenium (Se)-I	Leachable		105.3		%		70-130	26-FEB-14
Silicon (Si)-Lea	chable		N/A	MS-B	%		-	26-FEB-14
Silver (Ag)-Lead	chable		101.6		%		70-130	26-FEB-14
Sodium (Na)-Le	eachable		102.8		%		70-130	26-FEB-14
Strontium (Sr)-L	Leachable		N/A	MS-B	%		-	26-FEB-14
Thallium (TI)-Le	eachable		101.6		%		70-130	26-FEB-14
Tin (Sn)-Leacha	able		93.5		%		70-130	26-FEB-14
Titanium (Ti)-Le	eachable		102.3		%		70-130	26-FEB-14
Vanadium (V)-L	eachable		103.7		%		70-130	26-FEB-14
Zinc (Zn)-Leach	nable		102.3		%		70-130	26-FEB-14
MET-SPLP-MS-VA	Soil							
Batch R2	2802885							
WG1835844-2	DUP	L1424625-1						
Arsenic (As)-Le	eachable	0.00309	0.00301		mg/L	2.7	30	10-MAR-14
WG1835844-1 Arsenic (As)-Le	MB eachable		<0.00010		mg/L		0.0001	10-MAR-14
WG1835844-3	MS	L1424625-1			-			-
Arsenic (As)-Le	-	211210201	106.5		%		70-130	10-MAR-14
MET-WW-200.2-CC	CMS-VA Soil							
Batch R2	2798489							
WG1837121-4	CRM	VA-CANMET						
Aluminum (Al)			99.3		%		70-130	28-FEB-14
Antimony (Sb)			87.3		%		70-130	28-FEB-14
Arsenic (As)			102.9		%		70-130	28-FEB-14
Barium (Ba)			101.4		%		70-130	28-FEB-14
Beryllium (Be)			0.43		mg/kg		0.34-0.74	28-FEB-14
Bismuth (Bi)			89.2		%		70-130	28-FEB-14
Cadmium (Cd)			88.9		%		70-130	28-FEB-14
Calcium (Ca)			91.4		%		70-130	28-FEB-14
Chromium (Cr)			103.3		%		70-130	28-FEB-14
Cobalt (Co)			98.6		%		70-130	28-FEB-14

		Workorder	: L142462	25	Report Date: 18	3-MAR-14	Page	e 5 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-VA	Soil							
Batch R2798489)							
WG1837121-4 CRM		VA-CANME						
Iron (Fe)			95.6		%		70-130	28-FEB-14
Lead (Pb)			80.9		%		70-130	28-FEB-14
Lithium (Li)			77.8		%		70-130	28-FEB-14
Magnesium (Mg)			98.5		%		70-130	28-FEB-14
Manganese (Mn)			98.8		%		70-130	28-FEB-14
Molybdenum (Mo)			0.59		mg/kg		0.24-1.24	28-FEB-14
Nickel (Ni)			99.4		%		70-130	28-FEB-14
Phosphorus (P)			96.5		%		70-130	28-FEB-14
Potassium (K)			105.8		%		70-130	28-FEB-14
Selenium (Se)			0.31		mg/kg		0.12-0.52	28-FEB-14
Silver (Ag)			0.19		mg/kg		0.12-0.32	28-FEB-14
Sodium (Na)			113.0		%		70-130	28-FEB-14
Strontium (Sr)			88.2		%		70-130	28-FEB-14
Thallium (TI)			0.104		mg/kg		0.075-0.175	28-FEB-14
Tin (Sn)			0.9		mg/kg		0-3	28-FEB-14
Titanium (Ti)			103.4		%		70-130	28-FEB-14
Uranium (U)			92.8		%		70-130	28-FEB-14
Vanadium (V)			103.5		%		70-130	28-FEB-14
Zinc (Zn)			100.1		%		70-130	28-FEB-14
WG1837121-5 CRM		VA-NRC-ST	SD1					
Aluminum (Al)			105.9		%		70-130	28-FEB-14
Antimony (Sb)			99.1		%		70-130	28-FEB-14
Arsenic (As)			102.0		%		70-130	28-FEB-14
Barium (Ba)			100.3		%		70-130	28-FEB-14
Beryllium (Be)			111.9		%		70-130	28-FEB-14
Cadmium (Cd)			100.7		%		70-130	28-FEB-14
Calcium (Ca)			105.5		%		70-130	28-FEB-14
Chromium (Cr)			102.6		%		70-130	28-FEB-14
Cobalt (Co)			100.2		%		70-130	28-FEB-14
Copper (Cu)			102.3		%		70-130	28-FEB-14
Iron (Fe)			102.1		%		70-130	28-FEB-14
Lead (Pb)			99.9		%		70-130	28-FEB-14
Lithium (Li)			106.9		%		70-130	28-FEB-14
Magnesium (Mg)			100.0		%		70-130	28-FEB-14
Magnosiani (Mg)			100.0		70		10-130	20-FED-14

Reference VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1	Qualifier	Units % % % %	RPD	Limit 70-130 70-130 70-130	Analyzed 28-FEB-14 28-FEB-14
VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
	100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
	102.5 102.2 105.5 100.1		% %			
	102.2 105.5 100.1		%		70-130	
	105.5 100.1					28-FEB-14
	100.1				70-130	28-FEB-14
			%		70-130	28-FEB-14
	104.0		%		70-130	28-FEB-14
	104.0		%		70-130	28-FEB-14
	104.7		%		70-130	28-FEB-14
	104.1		%		70-130	28-FEB-14
	100.5		%		70-130	28-FEB-14
	99.8		%		70-130	28-FEB-14
	112.3		%		70-130	28-FEB-14
	104.5		%		70-130	28-FEB-14
	103.2		%		70-130	28-FEB-14
L1424625-1 15400	15700		mg/kg	1.9	40	28-FEB-14
0.67	0.79		mg/kg	17	30	28-FEB-14
49.6	40.4		mg/kg	21	30	28-FEB-14
229	238		mg/kg			28-FEB-14
0.51	0.51					28-FEB-14
<0.20	<0.20	RPD-NA				28-FEB-14
						28-FEB-14
						28-FEB-14
						28 FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14 28-FEB-14
						28-FEB-14 28-FEB-14
						28-FEB-14
						28-FEB-14 28-FEB-14
	15400 0.67 49.6 229	 104.1 100.5 99.8 112.3 104.5 103.2 103.2 15400 15700 0.67 15700 0.67 0.79 49.6 40.4 229 238 0.51 0.51 2.20 2.38 0.51 0.51 2.020 31.1 32.00 31.1 34000 33200 31.1 32.5 10.1 9.81 47.5 56.4 20200 21700 8.56 11.5 19.1 19.9 2920 3110 294 327 2.76 3.14 58.3 61.0 	104.1 100.5 99.8 112.3 104.5 104.5 103.2 L1424625-1 15400 0.67 0.67 49.6 40.4 229 6.51 6.51 6.20 6.108 0.108 0.113 34000 32200 31.1 32.5 10.1 9.81 47.5 56.4 20200 21700 8.56 11.5 19.1 19.9 2920 3110 294 327 2.76 3.14	104.1 % 100.5 % 99.8 % 112.3 % 104.5 % 104.5 % 103.2 % 15400 15700 mg/kg 0.67 0.79 mg/kg 49.6 40.4 mg/kg 229 238 mg/kg 0.51 0.51 mg/kg 0.51 0.51 mg/kg 0.108 0.113 mg/kg 34000 3200 mg/kg 31.1 32.5 mg/kg 10.1 9.81 mg/kg 47.5 56.4 mg/kg 10.1 9.91 mg/kg 20200 21700 mg/kg 19.1 19.9 mg/kg 2920 3110 mg/kg 294 327 mg/kg 294	104.1 % 100.5 % 99.8 % 112.3 % 104.5 % 104.5 % 104.5 % 103.2 % 15400 15700 mg/kg 1.9 0.67 0.79 mg/kg 17 49.6 40.4 mg/kg 21 229 238 mg/kg 0.8 <0.51	104.1 % 70-130 100.5 % 70-130 99.8 % 70-130 112.3 % 70-130 112.3 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 103.2 % 70-130 103.2 % 70-130 104.5 % 70-130 103.2 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.6 10.79 mg/kg 1.0 10.67 0.79 mg/kg 1.0 40 0.51 mg/kg 0.8 30 30 0.20 RPD-NA mg/kg 1.8 30 34000 33200 mg/k

		Workorder:	L142462	5 Re	eport Date: 1	8-MAR-14	P	age 7 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-V/	A Soil							
Batch R279848	Э							
WG1837121-3 DUP		L1424625-1						
Potassium (K)		740	790		mg/kg	6.7	40	28-FEB-14
Selenium (Se)		0.49	0.65		mg/kg	30	30	28-FEB-14
Silver (Ag)		<0.10	0.11	RPD-NA	mg/kg	N/A	40	28-FEB-14
Sodium (Na)		280	270		mg/kg	6.3	40	28-FEB-14
Strontium (Sr)		215	248		mg/kg	14	40	28-FEB-14
Thallium (TI)		0.148	0.176		mg/kg	17	30	28-FEB-14
Tin (Sn)		<2.0	<2.0	RPD-NA	mg/kg	N/A	40	28-FEB-14
Titanium (Ti)		731	674		mg/kg	8.2	40	28-FEB-14
Uranium (U)		0.610	0.706		mg/kg	15	30	28-FEB-14
Vanadium (V)		101	97.7		mg/kg	3.0	30	28-FEB-14
Zinc (Zn)		33.4	36.3		mg/kg	8.1	30	28-FEB-14
WG1837121-1 MB Aluminum (Al)			<50		mg/kg		50	28-FEB-14
Antimony (Sb)			<0.10		mg/kg		0.1	28-FEB-14
Arsenic (As)			<0.050		mg/kg		0.05	28-FEB-14
Barium (Ba)			<0.50		mg/kg		0.5	28-FEB-14
Beryllium (Be)			<0.20		mg/kg		0.2	28-FEB-14
Bismuth (Bi)			<0.20		mg/kg		0.2	28-FEB-14
Cadmium (Cd)			<0.050		mg/kg		0.05	28-FEB-14
Calcium (Ca)			<50		mg/kg		50	28-FEB-14
Chromium (Cr)			<0.50		mg/kg		0.5	28-FEB-14
Cobalt (Co)			<0.10		mg/kg		0.5	28-FEB-14
Copper (Cu)			<0.10		mg/kg			
			<0.30 <50		•••		0.5	28-FEB-14
Iron (Fe) Lead (Pb)			<0.50		mg/kg		50	28-FEB-14
. ,					mg/kg		0.5	28-FEB-14
Lithium (Li)			<5.0		mg/kg		5	28-FEB-14
Magnesium (Mg)			<20		mg/kg		20	28-FEB-14
Manganese (Mn)			<1.0		mg/kg		1	28-FEB-14
Molybdenum (Mo)			<0.50		mg/kg		0.5	28-FEB-14
Nickel (Ni)			<0.50		mg/kg		0.5	28-FEB-14
Phosphorus (P)			<50		mg/kg		50	28-FEB-14
Potassium (K)			<100		mg/kg		100	28-FEB-14
Selenium (Se)			<0.20		mg/kg		0.2	28-FEB-14
Silver (Ag)			<0.10		mg/kg		0.1	28-FEB-14

		Workorder	: L142462	5	Report Date: 18	3-MAR-14	P	age 8 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-VA	Soil							
Batch R2798489								
WG1837121-1 MB								
Sodium (Na)			<100		mg/kg		100	28-FEB-14
Strontium (Sr)			<0.50		mg/kg		0.5	28-FEB-14
Thallium (TI)			<0.050		mg/kg		0.05	28-FEB-14
Tin (Sn)			<2.0		mg/kg		2	28-FEB-14
Titanium (Ti)			<1.0		mg/kg		1	28-FEB-14
Uranium (U)			<0.050		mg/kg		0.05	28-FEB-14
Vanadium (V)			<0.20		mg/kg		0.2	28-FEB-14
Zinc (Zn)			<1.0		mg/kg		1	28-FEB-14
WG1837121-2 MB Aluminum (Al)			<50		mg/kg		50	
Antimony (Sb)			<0.10		mg/kg		0.1	28-FEB-14
Arsenic (As)			<0.050		mg/kg		0.05	28-FEB-14
Barium (Ba)			<0.50		mg/kg		0.05	28-FEB-14 28-FEB-14
Beryllium (Be)			<0.20		mg/kg		0.3	
Bismuth (Bi)			<0.20		mg/kg		0.2	28-FEB-14 28-FEB-14
Cadmium (Cd)			<0.20		mg/kg		0.2	
Calcium (Ca)			<50		mg/kg		50	28-FEB-14 28-FEB-14
Chromium (Cr)			<0.50		mg/kg		0.5	28-FEB-14 28-FEB-14
Cobalt (Co)			<0.10		mg/kg		0.3	
Copper (Cu)			<0.10		mg/kg		0.1	28-FEB-14 28-FEB-14
Iron (Fe)			<50		mg/kg		50	
Lead (Pb)			<0.50		mg/kg		0.5	28-FEB-14 28-FEB-14
Lithium (Li)			<0.30 <5.0		mg/kg			
Magnesium (Mg)			<3.0 <20		mg/kg		5	28-FEB-14
Magnesium (Mg) Manganese (Mn)			<20 <1.0		mg/kg		20	28-FEB-14
							1	28-FEB-14
Molybdenum (Mo)			<0.50		mg/kg		0.5	28-FEB-14
Nickel (Ni) Phosphorus (P)			<0.50 <50		mg/kg		0.5	28-FEB-14
					mg/kg		50	28-FEB-14
Potassium (K) Selenium (Se)			<100 <0.20		mg/kg		100	28-FEB-14
			<0.20 <0.10		mg/kg		0.2	28-FEB-14
Silver (Ag)					mg/kg		0.1	28-FEB-14
Sodium (Na)			<100		mg/kg		100	28-FEB-14
Strontium (Sr) Thallium (TI)			<0.50 <0.050		mg/kg mg/kg		0.5 0.05	28-FEB-14 28-FEB-14

		Workorder	L142462	25	Report Date: 18	3-MAR-14	Pa	ige 9 of 13
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-VA	Soil							
Batch R2798489								
WG1837121-2 MB								
Tin (Sn)			<2.0		mg/kg		2	28-FEB-14
Titanium (Ti)			<1.0		mg/kg		1	28-FEB-14
Uranium (U)			<0.050		mg/kg		0.05	28-FEB-14
Vanadium (V)			<0.20		mg/kg		0.2	28-FEB-14
Zinc (Zn)			<1.0		mg/kg		1	28-FEB-14
MOISTURE-VA	Soil							
Batch R2797649								
WG1836679-2 LCS								
Moisture			99.8		%		70-130	26-FEB-14
WG1836679-1 MB Moisture			<0.25		0/		0.05	
woisture			<0.25		%		0.25	26-FEB-14
PAH-TMB-H/A-MS-VA	Soil							
Batch R2797995								
WG1836681-4 IRM Acenaphthene		ALS PAH1 R	M 70.7		%		60-130	
Acenaphthylene			126.6		%		60-130 60-130	27-FEB-14 27-FEB-14
Anthracene			125.0		%		60-130	27-FEB-14 27-FEB-14
Benz(a)anthracene			116.8		%		60-130	27-FEB-14 27-FEB-14
Benzo(a)pyrene			99.1		%			
Benzo(b)fluoranthene			99.1 129.3		%		60-130 60-130	27-FEB-14 27-FEB-14
Benzo(g,h,i)perylene			94.5		%		60-130 60-130	27-FEB-14 27-FEB-14
Benzo(k)fluoranthene			94.5 107.4		%			
Chrysene			118.7		%		60-130	27-FEB-14 27-FEB-14
Dibenz(a,h)anthracene			109.5		%		60-130	
Fluoranthene			123.8		%		60-130	27-FEB-14
Fluorene							60-130	27-FEB-14
			77.7 100.0		%		60-130	27-FEB-14
Indeno(1,2,3-c,d)pyrene			97.2				60-130	27-FEB-14
2-Methylnaphthalene					%		60-130	27-FEB-14
Naphthalene Phenanthrene			99.0		%		50-130	27-FEB-14
			118.4		%		60-130	27-FEB-14
Pyrene			123.5		%		60-130	27-FEB-14
WG1836681-1 MB Acenaphthene			<0.0050		mg/kg		0.005	27-FEB-14
Acenaphthylene			<0.0050		mg/kg		0.005	27-FEB-14 27-FEB-14
Anthracene			<0.0030		mg/kg			
Anunacene			<0.0040		ilig/kg		0.004	27-FEB-14

		Workorder:	L142462	5	Report Date: 18	3-MAR-14	Pa	age 10 of 13
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R2797995								
WG1836681-1 MB								
Benz(a)anthracene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(a)pyrene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(b)fluoranthene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	27-FEB-14
Chrysene			<0.010		mg/kg		0.01	27-FEB-14
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	27-FEB-14
Fluoranthene			<0.010		mg/kg		0.01	27-FEB-14
Fluorene			<0.010		mg/kg		0.01	27-FEB-14
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	27-FEB-14
2-Methylnaphthalene			<0.010		mg/kg		0.01	27-FEB-14
Naphthalene			<0.010		mg/kg		0.01	27-FEB-14
Phenanthrene			<0.010		mg/kg		0.01	27-FEB-14
Pyrene			<0.010		mg/kg		0.01	27-FEB-14
Surrogate: Naphthalene	d8		74.8		%		50-130	27-FEB-14
Surrogate: Acenaphthene	e d10		76.7		%		60-130	27-FEB-14
Surrogate: Phenanthrene	e d10		77.6		%		60-130	27-FEB-14
Surrogate: Chrysene d12	2		88.0		%		60-130	27-FEB-14
PH-WW-1:2-DI-MAN-VA	Soil							
Batch R2797958								
WG1836549-13 DUP pH (1:2 soil:water)		L1424625-1 8.17	8.09	J	рН	0.08	0.3	27-FEB-14
PAH-SPLP-WT	Waste							
Batch R2798085								
WG1837346-1 CVS 1-Methylnaphthalene			99.2		%		50-150	28-FEB-14
2-Methylnaphthalene			102.2		%		50-150	28-FEB-14
Acenapthene			103.8		%		50-150	28-FEB-14
Acenaphthylene			104.9		%		50-150	28-FEB-14
Anthracene			107.8		%		50-150	28-FEB-14
Benzo(a)anthracene			105.1		%		50-150	28-FEB-14
Benzo(a)pyrene			104.6		%		50-150	28-FEB-14
Benzo(b)fluoranthene			105.2		%		50-150	28-FEB-14
Denzo(b)nuorantinene			105.2		70		50-150	20-FED-14

		Workorder	: L142462	5	Report Date: 18	3-MAR-14	Pa	ige 11 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
AH-SPLP-WT	Waste							
Batch R2798085								
WG1837346-1 CVS					<u>0</u> ′			
Benzo(k)fluoranthene			99.2		%		50-150	28-FEB-14
Chrysene			109.7		%		50-150	28-FEB-14
Dibenzo(ah)anthracene			106.2		%		50-150	28-FEB-14
Fluoranthene			103.9		%		50-150	28-FEB-14
Fluorene			104.8		%		50-150	28-FEB-14
Indeno(1,2,3-cd)pyrene			100.6		%		50-150	28-FEB-14
Naphthalene			107.9		%		50-150	28-FEB-14
Phenanthrene			102.6		%		50-150	28-FEB-14
Pyrene			112.4		%		50-150	28-FEB-14
WG1836846-2 LCS 1-Methylnaphthalene			78.5		%		E0 450	28-FEB-14
2-Methylnaphthalene			78.5		%		50-150	
Acenapthene			79.2 85.9		%		50-150	28-FEB-14
			86.9				50-150	28-FEB-14
Acenaphthylene			89.6		%		50-150	28-FEB-14
Anthracene					%		50-150	28-FEB-14
Benzo(a)anthracene			86.7		%		50-150	28-FEB-14
Benzo(a)pyrene			86.2		%		50-150	28-FEB-14
Benzo(b)fluoranthene			75.5		%		50-150	28-FEB-14
Benzo(g,h,i)perylene			80.1		%		50-150	28-FEB-14
Benzo(k)fluoranthene			81.1		%		50-150	28-FEB-14
Chrysene			91.1		%		50-150	28-FEB-14
Dibenzo(ah)anthracene			88.1		%		50-150	28-FEB-14
Fluoranthene			90.1		%		50-150	28-FEB-14
Fluorene			88.8		%		50-150	28-FEB-14
Indeno(1,2,3-cd)pyrene			84.8		%		50-150	28-FEB-14
Naphthalene			84.0		%		50-150	28-FEB-14
Phenanthrene			88.7		%		50-150	28-FEB-14
Pyrene			97.6		%		50-150	28-FEB-14
WG1836846-1 MB 1-Methylnaphthalene			<0.020		ug/L		0.02	28-FEB-14
2-Methylnaphthalene			<0.020		ug/L		0.02	28-FEB-14
Acenapthene			<0.020		ug/L		0.02	28-FEB-14
Acenaphthylene			<0.020		ug/L		0.02	28-FEB-14
Anthracene			<0.020		ug/L		0.02	28 FEB-14
· · · · · ·					· J· =		0.02	

		Workorder	: L142462	25	Report Date: 18	8-MAR-14	Page 12 of 13		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-SPLP-WT	Waste								
Batch R2798085 WG1836846-1 MB									
Benzo(a)pyrene			<0.010		ug/L		0.01	28-FEB-14	
Benzo(b)fluoranthene			<0.020		ug/L		0.02	28-FEB-14	
Benzo(g,h,i)perylene			<0.020		ug/L		0.02	28-FEB-14	
Benzo(k)fluoranthene			<0.020		ug/L		0.02	28-FEB-14	
Chrysene			<0.020		ug/L		0.02	28-FEB-14	
Dibenzo(ah)anthracene			<0.020		ug/L		0.02	28-FEB-14	
Fluoranthene			<0.020		ug/L		0.02	28-FEB-14	
Fluorene			<0.020		ug/L		0.02	28-FEB-14	
Indeno(1,2,3-cd)pyrene			<0.020		ug/L		0.02	28-FEB-14	
Naphthalene			<0.020		ug/L		0.02	28-FEB-14	
Phenanthrene			<0.020		ug/L		0.02	28-FEB-14	
Pyrene			<0.020		ug/L		0.02	28-FEB-14	
Surrogate: 2-Fluorobiph	enyl		86.9		%		50-150	28-FEB-14	
Surrogate: d14-Terphen	yl		95.4		%		50-150	28-FEB-14	

Workorder: L1424625

Report Date: 18-MAR-14

Legend:

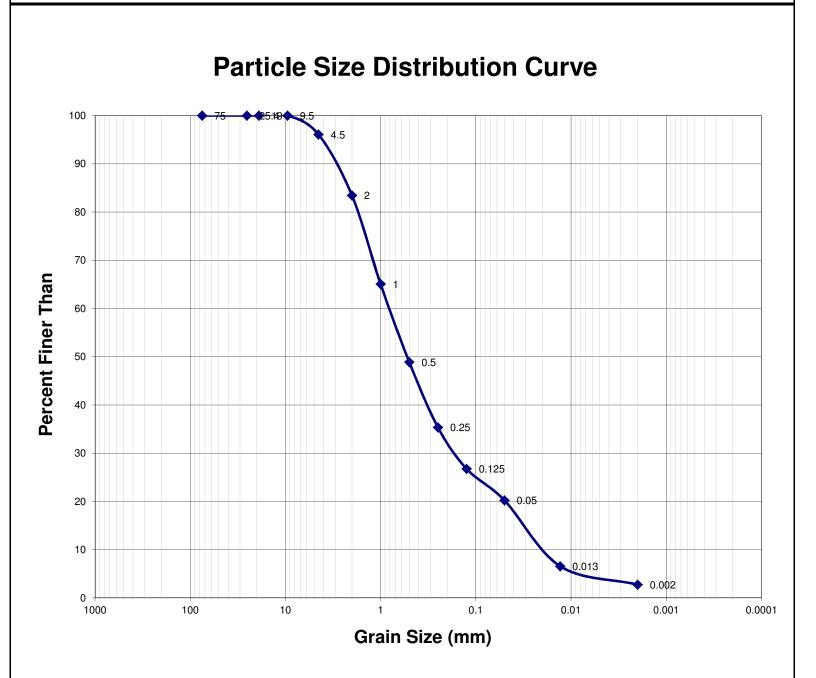
Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

_	Qualifier	Description
	J	Duplicate results and limits are expressed in terms of absolute difference.
	MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
	RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

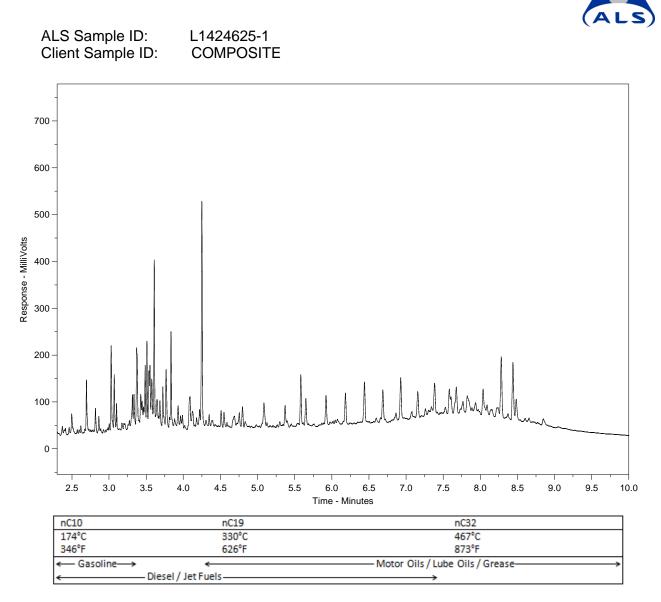

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Laboratory Group

819-58th Street, Saskatoon, SK S7K 6X5


Summary of Results

Unified Soil Classification System (USCS)							
Size Class	Size Range	Wt. (%)					
Cobbles	> 3"	0					
Gravel	4.75mm - 3"	4					
Coarse Sand	2.0mm - 4.75mm	13					
Medium Sand	0.425mm - 2.0mm	35					
Fine Sand	0.075mm - 0.425mm	26					
Fines	< 0.075mm	22					

Canadian Soil Survey Committee (CSSC)						
Size Class	Size Range	Wt. (%)				
Cobbles	> 3"	0				
Gravel	2mm - 3"	17				
Sand	0.05mm - 2mm	63				
Silt	0.002mm - 0.05mm	17				
Clay	< 0.002mm	3				
Texture	Loamy sand					

Method Reference: Can. Soc. Soil Sci. (1993) Method 47.2

Hydrocarbon Distribution Report

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

APPENDIX D

Appendix D Environmental Investigation of Lower Dam

DATE April 28, 2014

REFERENCE No. 1314470516-005-TM-Rev0-7000

TO File: Lower Colliery Dam EvaluationNanaimo City Hall

FROM Jim Laidlaw, P.Eng.

EMAIL jim_laidlaw@golder.com

INITIAL GEO-ENVIRONMENTAL ASSESSMENT OF SLAG FILL ENCOUNTERED AT THE LOWER COLLIERY DAM IN NANAIMO, BRITISH COLUMBIA

This technical memorandum presents the results of an initial geo-environmental assessment of suspect slag, ash and cinder fill (hereafter referred to as the slag fill) encountered during the investigation of the Lower Colliery Dam in Nanaimo, British Columbia.

1.0 BACKGROUND

The Lower Colliery Dam is the furthest downstream of a series of three dams on the Chase River system, is situated to the southeast of the City of Nanaimo, and is within a municipal park (Colliery Dam Park).

The Lower Colliery Dam was reported to have been constructed after 1904, to support the development and operation of local coal mines. The Lower Colliery Dam is a rock fill dam with a 1.2 metre thick, vertical, concrete core wall. The dam is approximately 24 metres high, and has a crest length and width of 77 metres and 10 metres, respectively. The concrete used to construct the core of the dam is thought to be one of the first industrial uses of concrete manufactured on Vancouver Island, following the establishment of the Todd Bay Portland Cement Quarry in 1904. The Todd Bay Quarry was located at the Butchart Gardens site, north of Victoria, BC¹.

Fill, consisting of mine and process waste, was placed on the downstream face of the dam sometime after the dam's construction. This fill was found (through previous investigations) to include zones of slag, cinder and ash material.

2.0 ISSUES WITH RESPECT TO THE LOWER DAM

A number of issues have been raised with respect to the Lower Dam, including the quality of fills placed to support the dam, the design and capacity of the dam and spillway structure, and the seismic and flood performance of the dam. An additional concern relates to the age of the dam, and the integrity of the concrete in the core wall.

To further assess the condition of the dam, and the fill comprising the downstream face of the dam, a geotechnical investigation was initiated by Golder Associates Ltd. (Golder) in 2014. The purpose of the geotechnical investigation was to address gaps and uncertainties in the existing information available for the Lower Dam. The investigation included a surface geophysical survey, the coring of holes in the concrete wall of the Lower Dam, and the drilling and sampling of three boreholes in the downstream shell of the Lower Dam.

Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

¹ Based on information contained in an EBA Engineering Consultants Ltd. report, dated April 14, 2010.

As part of the geotechnical and geophysical investigation of the dam, sampling and analysis of representative samples of the slag fill material was also undertaken, for the assessment of potential contamination issues. Coal slag has been reported, in the literature, to potentially contain concentrations of metals and hydrocarbon components.

3.0 GEOTECHNICAL INVESTIGATION AND SOIL SAMPLING

The geotechnical investigation of the Lower Dam was conducted February 11 to 14, 2014. As part of the geotechnical investigation of the dam, soil samples were collected from the suspect slag fill material for potential chemical analyses.

Three boreholes (SH14-04 to SH14-06) were drilled within the dam fill, and ten (10) sub-samples (plus one duplicate sample) of the soil containing visible slag fill, were collected from varying depth intervals, for environmental evaluation and testing.

Details on the geotechnical investigation including sample locations and soil conditions can be found in Section 6.0 of the Factual Report.

3.1 Observations

The slag fill was encountered below surficial fill and extended 3.6 to 5.4 m below ground surface. The slag fill was generally described as being black in colour, and containing cinder, slag and ash components. No odours, staining or other debris was noted to be associated with this material.

3.2 Potential Contaminants of Concern

The origin of the reported slag fill is currently unknown. However, assuming that it was a by-product of local coal mining and processing operations, the following potential contaminants of concern were inferred, based on the results of limited research on coal slag composition:

- Metals (in particular, lead and zinc);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Extractable Petroleum Hydrocarbons (EPH); and
- Leachable metals and hydrocarbons.

3.3 Inferred Applicable Standards

The Lower Dam is located within the City of Nanaimo, and also within a City park. While a dam would typically be considered industrial land use, the location of the dam (*i.e.*, within a public park) would suggest that the most conservative applicable standards would be the British Columbia Ministry of Environment's (BC MoE's) Contaminated Sites Regulation (CSR) Park Land Use (PL) soil standards.

Residential developments are located in the vicinity of the park, but outside the area of the dam. Commercial and industrial operations are located to the northwest of the park, but again, at some distance from the dam. No agricultural lands have been identified in the immediate vicinity of the dam, to date. Therefore, the Agricultural Land Use (AL), Residential Land Use (RL), Commercial Land Use (CL) and Industrial Land Use (IL) soil standards were not considered relevant for the purposes of this initial assessment.

With respect to potentially applicable, site-specific factors under the CSR, the following site-specific factors were considered relevant, given the initial evaluation of conditions at and near the dam:

- Intake of Contaminated Soil (applicable at all sites);
- Toxicity to Soil Invertebrates and Plants (applicable at all sites);
- Groundwater Flow to Surface Water Used by Aquatic Life (freshwater); and
- Groundwater Used for Drinking Water.

In addition to the CSR standards, the standards presented in the BC MoE's Hazardous Waste Regulation (HWR) were also considered relevant. Leachate Quality Standards (LQS) used in the assessment of the leachability of the material, and other specific standards associated with composition (for example, PAH Toxicity Equivalence (TEQ) factor) were also referenced.

4.0 **RESULTS OF ANALYSES**

4.1 General

Soil samples collected during the geotechnical investigation of the Lower Dam were placed in clean, glass sample containers supplied by the analytical laboratory. Soil was placed in each jar such that there was minimal headspace remaining in the jar. The jars were then sealed, appropriately labeled, and placed in a cooler with ice packs, for storage and transport to the analytical laboratory.

Soil samples collected from the dam were shipped to ALS Laboratories (ALS) in Burnaby, British Columbia for selected chemical analyses and/or archiving. ALS is a Canadian Association for Laboratory Accreditation (CALA) certified, professional environmental testing laboratory. All sample submissions were accompanied by appropriately completed, Chain-of-Custody forms.

The results of chemical analyses were detailed in the Certificate of Analysis report prepared by ALS, and this report is attached following the text of this technical memorandum. The results of analyses have also been tabulated and compared with the inferred relevant environmental quality standards under the CSR and HWR. The tabulated results are presented in Tables 1 to 4, and are also attached following the text of this technical memorandum.

The environmental sampling and analysis program was split into two phases: an initial phase and a follow-up phase. The reasoning for this split was that it was considered important to obtain an indication of the chemical quality of the slag fill as soon as possible, so that if additional sampling was required, it could be conducted at the time of the geotechnical investigation. Therefore, samples of the slag fill obtained from the first borehole excavated at the Lower Dam (*i.e.*, SH14-05) were collected and overnight couriered to the laboratory for rush analysis of selected parameters. The results of these initial analyses would then determine the need for, and scope of, follow-up sampling and analysis.

4.2 Initial Analyses

To initially assess the chemical quality of the slag fill, three samples from the initial borehole (SH14-05) were submitted for selected chemical analyses, including: metals, Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH: basically a combination of EPH and PAH analyses) and Toxicity Characteristics Leaching Procedure (TCLP; for assessment of metals leachability).

The results of analyses were compared with the relevant CSR and HWR standards. The interpretation of these initial results was as follows:

- The slag fill contained metals concentrations that exceeded the CSR PL and CSR IL soil standards. Arsenic and barium were identified as the primary metals found in exceedance of the CSR soil standards (Table 1).
- Sodium concentrations detected in the slag fill were also reported to exceed the CSR PL soil standard (Table 1). However, the reported sodium concentration was based on an aggressive, Inductively Coupled Plasma Mass Spectrometer (ICP-MS) testing method. The BC MoE recommends a less aggressive, Saturated Paste Method of analysis for determination of sodium and chloride concentrations in soil. In our experience, the ICP-MS testing method results in a significantly higher reported sodium concentration than the Saturated Paste Method. Therefore, the reported sodium concentrations are likely over-estimates of the actual sodium (ion) concentrations in soil. It is important to note that the CSR standard for sodium is also based on the sodium (ion) concentration resulting from the Saturated Paste Method of analysis.
- The slag fill contained hydrocarbon and certain PAH constituent concentrations exceeding the CSR PL soil standards (Table 1). The hydrocarbon concentrations reported between samples collected from the same borehole were observed to vary significantly, suggesting inhomogeneity within the slag fill.
- The TCLP results for metals indicated that the slag fill would not be classified as a Hazardous Waste, based on metals leachability (Table 2).
- The slag fill would also not be classified as a Hazardous Waste, based on hydrocarbon content. Total hydrocarbon concentrations reported in the slag fill were much less than 30,000 milligrams per kilogram (mg/kg) or 3% oil and grease (*i.e.*, the HWR Waste Oil standard) (Table 3).
- The slag fill would not be classified as a Hazardous Waste, based on PAH TEQ calculations (Table 3).

The results of the initial chemical analyses conducted on samples from the first borehole drilled at the dam indicated that the slag fill did contain metals and hydrocarbon concentrations exceeding the inferred applicable CSR soil standards.

To further assess the slag fill, additional, follow-up analyses of other representative samples from slag fill was considered warranted.

4.3 Follow-Up Analyses

Once the remaining two, geotechnical boreholes had been drilled and sampled, selected additional analyses were requested, as follows:

- A composite sample, generated from all borehole samples collected from the slag fill material, was prepared and submitted for analysis of:
 - Total metals;
 - EPH;
 - PAH; and
 - Synthetic Precipitation Leaching Procedure (SPLP; analysed for metals and PAH).
- TCLP analysis for benzo (a) pyrene was also requested for a previously submitted, discrete slag fill sample.

The intent of the composite sample analysis was to assess the general chemical characteristics of the slag fill, in light of the relatively inhomogeneous nature of the fill material noted from the analysis of the initial, three, discrete samples from the first borehole.

The intent of the SPLP test was to assess the leachate generated through simulated precipitation flow-through, to evaluate whether such leachate would contain chemical concentrations of concern with respect to the CSR Water standards and/or the British Columbia Water Quality Guidelines (BCWQG).

The intent of the TCLP analysis for benzo (a) pyrene was to provide information necessary to assess whether the material would be considered a Hazardous Waste, based on benzo (a) pyrene leachability.

The results of these follow-up analyses are summarized below:

- The composite slag fill sample (comprising equal portions of 10 discrete samples from the slag fill zone) contained an arsenic concentration exceeding both the CSR PL and CSR IL soil standards (with reference to the site-specific factors considered applicable) (Table 1).
- Reported sodium concentrations in the composite slag fill sample exceeded the CSR PL soil standard. However, this reported concentration is not considered valid for the purposes of chemical quality assessment, for the reasons outlined in the previous section (Table 1).
- The composite slag fill sample contained hydrocarbon (light and heavy extractable petroleum hydrocarbon; LEPH and HEPH) concentrations exceeding the CSR PL soil standards (Table 1).
- The composite slag fill sample contained a naphthalene concentration exceeding the CSR PL soil standard (Table 1).
- The composite slag fill sample did not contain concentrations that would classify it as a Hazardous Waste, based on:
 - Total hydrocarbon concentrations composite sample (Table 3);
 - PAH TEQ composite sample (Table 3); or
 - TCLP leachability (benzo (a) pyrene). [Note that this analysis was conducted on the discrete sample containing the highest reported benzo (a) pyrene concentration (SH14-05; Sample 3)] (Table 2).

The SPLP testing of the composite slag fill sample indicated that, while certain metals and PAH constituents were detected in the leachate, none of the reported concentrations in the leachate exceeded either the CSR AW (freshwater) standards, or the BCWQ freshwater guidelines, including that of arsenic (Table 4)².

5.0 GENERAL SUMMARY

The results of investigations and analyses conducted, to date, by Golder at the Lower Dam site indicate the following:

- The Lower Colliery Dam contains cinder, ash and slag fill on its downstream face.
- The slag fill is estimated to be up to 6 metres, or more, in thickness on the downstream face.
- The slag fill contains metals concentrations (specifically barium and arsenic) that exceed both the CSR PL and CSR IL soil standards.
- The slag fill contains hydrocarbon concentrations (extractable petroleum hydrocarbon (LEPH and/or HEPH) and selected polycyclic aromatic hydrocarbon (PAH) constituents) that exceed the CSR PL soil standards.
- Testing results obtained, to date, do not indicate that the slag fill would be classified as a Hazardous Waste under the HWR.
- Synthetic Precipitation Leaching Procedure (SPLP) testing suggests that the leachate generated through contact between the slag fill and precipitation would likely not result in water concentrations exceeding either the CSR AW (freshwater) standards or the BCWQ guidelines for freshwater.

As exceedances of the inferred applicable CSR soil standards have been detected in the slag fill, future treatment, handling or dam remediation activities involving this fill will likely require regulatory notification and, possibly, permitting.

6.0 LIMITATIONS AND USE

This technical memorandum (report) was prepared for the exclusive use of The City of Nanaimo. The report, which specifically includes all tables, figures and attachments, is based on data and information collected during the site investigation conducted by Golder Associates Ltd., and is based solely on the conditions of the property at the time of the field investigation, supplemented by historical information and data obtained by Golder Associates Ltd., as described in this report.

Except where specifically stated to the contrary, the information contained in this report was provided to Golder Associates Ltd. by others, and has not been independently verified or otherwise examined by Golder Associates Ltd. to determine its accuracy of completeness. Golder Associates Ltd. has relied in good faith on this information and does not accept responsibility of any deficiency, misstatements or inaccuracies contained in the report as a result of omissions, misinterpretation and/or fraudulent acts of the persons interviewed or contacted, or errors or omissions in the reviewed documentation.

² Certain metal detection limits exceeded the standards and/or guidelines, making interpretation of these results impossible. However, for the primary contaminants of concern (*i.e.*, arsenic and barium), where detection limits were raised, a request was made to re-analyse the sample to obtain a lower detection limit.

The assessment of environmental conditions and possible hazards at this site has been made using the results of chemical analyses of discrete soil samples from a limited number of locations. The site conditions between sampling locations have been inferred based on conditions observed at the borehole locations. Subsurface conditions may vary from these sample locations. Additional study, including further subsurface investigation, can reduce inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a site may be contaminated and remains undetected.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

The content of this report is based on information collected during our investigation, our present understanding of the site conditions, and our professional judgment in light of such information available at the time of this report. This report provides a professional opinion, and therefore no warranty is either expressed, implied or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments, as required.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

Jim Laidlaw, P.Eng. Principal, Senior Project Engineer

JL/sn

Attachments: Table 1 – Results of Soil Analyses – Metals, Hydrocarbons Table 2 – Results of Soil Leachate Analyses – TCLP (Metals, B[a]P) Table 3 – Results of Soil Analyses – Other HWR Tests Table 4 – Results of Soil Leachate Analyses – SPLP Attachment 1 – Certificate of Analysis - ALS

o:\final\2013\1447\13-1447-0516\1314470516-004-r-rev0\appendix d environmental investigation\1314470516-005-tm-rev0-7000 geo-env assessment of slag fill 28apr_14.docx

Table 1: Results of Soil Analyses - Metals, Hydrocarbons Namaimo Colliery Dams Nanaimo, BC

Displat Progenitor Signal Progenitor Signal Progenitor Signal Progenitor al (gH unity) 20 6 40 77.4 18.7 19.2 All Media alminum 10 0 10 10.0 15.00 15.00 15.00 15.00 10.00 15.00 0.07 20.1 0.00 10.00 10.00 10.00 0.07 20.1 0.00 10.00 0.03<	Sample Identification Depth (metres, below ground surface) SCN Date Sampled QA/QC		MCS	CSR Standards for Industrial Land Use (CSR IL)	MCS	SH14-05 SA E1 0.76 - 1.15 10-368952 #1 11-Feb-14 Discrete	SH14-05 SA E3 3.69 - 4.00 10-368952 #3 11-Feb-14 Discrete	SH14-05 SA E5 6.77 - 7.08 10-368952 #5 11-Feb-14 Discrete	SH14-04/05/06 Various L1424625-1 11 to 14-Feb-14 Composite
μοιακου (%) p(H) (Haring) μοιακου (H) (Haring) 2.1 1.2 1.7 1.8.7 1.9.7 2.8.1 Lind aluminom 20 0 40 0 1.4.6 0.5.0 0.6.6 Lind atomic 10 0 40 0 1.4.6 0.5.0 0.6.6 Station 1.5 0 40 0.0 40.0 0.2.3 0.3.3		(CORTE)	N		A	Distete	Discrete	Distete	Composite
ph (pl minis) 8.01 7.74 7.22 8.71 Taid Modes aintonion 20 0 40 0 1400 0.50 0.60 aintonion 25 00 40 0 1.01 0.00 0.60 0.67 benyluni 40 0 40 0 0.61 0.67 0.97 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72	~					22.1	15.4	10.5	10.0
Cali Mada Aminana animony Cali Mada Aminana animony Cali Mada Dissol (15) Cali Mada Dissol (15) <thcali mada<br="">Dissol (15) <thcali mada<br="">Dissol (15)</thcali></thcali>									
aluminani atiminony nume 34000 12400 13200 15400 arientic 15 DW 15 DW 0.51 0.44 0.50 0.44 0.50 bergliam 4 G 15 DW 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.43 0.51 0.52 0.51	pH (pH units)					8.01	7.74	7.22	8.17
aluminani atiminony nume 34000 12400 13200 15400 arientic 15 DW 15 DW 0.51 0.44 0.50 0.44 0.50 bergliam 4 G 15 DW 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.43 0.51 0.52 0.51	Total Matals								
antinony 20 G 40 G 1.04 0.50 0.67 bartum 400 DW 15 DW 515 56.44 20.3 400 220 bornin 400 DW 80 G 1.3 0.57 0.51 binnin 13.5 35 DFpH 60.50 0.121 0.12 0.020 caldium 13.5 35 DFpH 74200 220600 227800 4000 chornin 00 150 G 300 G 12.5 344 311 chornin 00 150 FTrpH 74.200 22800 1000 2000 kad 100-500 DFpH 75.50 13.9 65.0 8.5 ina 1.000 S 100-2000 DTpH 4.50 13.0 20.0 magesian 100 G 100 S 335 339 305 224 maccor (ancagaic) 13.0 50 <td></td> <td></td> <td></td> <td></td> <td></td> <td>34500</td> <td>12400</td> <td>15300</td> <td>15400</td>						34500	12400	15300	15400
arcsch 15 DW 15 DW 5.15 56.4 20.3 40.0 berytim 4 G 8 G 1.3 0.39 0.37 0.52 berytim 4 G 8 G 1.31 0.39 0.37 0.50 calriam 1.5 35 D/pH 40.05 0.121 0.112 0.112 0.112 0.112 0.030 calriam 60 100 DW 60 000 DV 2200 2500 17500 2200 choain 100 500 D/pH 45.0 11.3 4.6.0 8.5 ina 100 500 D/pH 4.5.0 13.9 4.6.0 8.5 inagance 1200 S 1900 S 2000 13.9 4.6.0 8.6 inagance 1200 S 1900 S 2000 13.7 2.0.1 10.0 10.0 10.0 10.0 10.0 <td></td> <td>20</td> <td>G</td> <td>40</td> <td>G</td> <td></td> <td></td> <td></td> <td></td>		20	G	40	G				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-								
beydmin 4 6 8 6 1.1 0.39 0.37 0.03 cafminn 1.5 · 35 DipH 1.5 · 500 D'r)H -0.20									
binmth -0.20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
calarian calcium 15-33 D1pH 13-500 D71pH -0.050 0.121 0.102 0.004 calcium 0	-	4	9	0	U				
calciam o 0 7420 2660 27800 3900 3910 cobaix 50 G 300 G 129 9.05 10.6 10.1 copper 00-150 FT/pH 60.6 46.8 50.9 9.05 10.6 10.0 22800 129.9 9.05 10.0 10.0 00.0 10.0 <td></td> <td>1.5 25</td> <td>D/I/-II</td> <td>1 5 500</td> <td>D/T/-II</td> <td></td> <td></td> <td></td> <td></td>		1.5 25	D/I/-II	1 5 500	D/T/-II				
anomium 00 ¹⁰⁰ DW 00 ¹⁰⁰ DW 24.4 42.5 34.4 31.1 copper 90-150 FTrpH 00 12.9 95.5 10.6 10.1 copper 100-500 D1.9H 100-2.000 DTrPH 26.0 12.9 70.00 2020 initium 100-500 D1.9H 100-2.000 DTrPH 25.0 12.9 26.3 19.0 magesim 100 S 19.000 S 20.00 30.3 30.9		1.5 - 55	D/I/рн	1.5 - 500	D/1/pH				
soluti 90 6 129 995 10.6 10.1 sopper 90.150 FTpH 90.250 FTpH 6666 46.8 50.9 47.5 no 100.500 $D1pH$ 100.500 $D1pH$ 2100 22800 17900 2200 magnetic 1600 S 21.77 21.3 26.3 191 magnetic 1800 S 335 339 305 2202 magnetic 10.6 $d0.6$ S 335 3319 305 2204 marcay (inegnic) 10.6 $d0.6$ S 335 3319 305 220 maked 100 G 400 S 335 3910 012 016.3 sidentim 3 G 100 G 420 044 322 326 340 910 1020 740 3400 240 3404 <		Total		Total	1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
ion ion <thion< th=""> <thion< th=""> <thion< th=""></thion<></thion<></thion<>	cobalt				G	12.9		10.6	
lask 100 500 D/pH 100 -5.0 13.9 -6.0 85.6 inhim 1.000 S 20.000 S 27.7 21.3 26.0 19.1 nagares 15 1 150 T 0.0100 0.312 0.163 0.200 molybdorum 10 G 40 G 3.15 2.59 1.37 27.6 nickel 100 G 300 G 3.52 7.10 57.2 38.3 phosphorus - - 723 40.41 302 236 poltssim - - 480 910 100.00 740 soliterin 30 G 40.0 G 0.11 0.12 0.12 2.01 soliterin 30 G 40.0 G 0.10 0.20 740 3.02 3.02 1.01 2.02 2.0 0.10 0.10 1.01 2.01 1.01 2.01 <td>copper</td> <td>90 - 150 H</td> <td>F/T/pH</td> <td>90-250</td> <td>F/T/pH</td> <td></td> <td></td> <td></td> <td>47.5</td>	copper	90 - 150 H	F/T/pH	90-250	F/T/pH				47.5
Inhim I.600 S 20,000 S 27,7 21,3 26,3 19,10 magnesice 1800 S 19,000 S 335 339 305 2920 marcary (isorganic) 15 1 10 G 335 339 305 2940 marcary (isorganic) 15 1 10 G 315 2.59 1.37 2266 mickel 100 G 500 G 35.2 71.0 57.2 58.3 potssium 3 G 10 G 40.0 0.11 0.12 0.12 0.12 0.12 0.10 74.3 8.44 9.0 9.0 7.3 6.44 9.0 0.100 7.4 9.0 9.0 7.4 9.0 7.4 7.2 4.84 9.0 1.0.12 0.12 0.12 0.12 0.10 0.17 1.00 7.4 1.0.12 0.12 0.10 0.0 1.0 1.12 0.12	iron					23100	22800	17900	20200
linhum I.000 S 20,000 S 27,7 21,3 20,3 19,10 magnesim 2000 4490 3290 2920 magnesim 15 1 00190 0335 339 305 2940 mercury (inorganic) 15 1 400 G 31,5 2.59 1.57 2.63 nickd 100 G 500 G 31,5 2.59 1.57 2.63 potastum - 723 404 920 326 30.0 730 30.0 730	lead	100 - 500	D/I/pH	100 - 2,000	D/T/pH	<5.0	13.9	<6.0	8.56
Isoo S 19,00 S 335 339 305 294 mercury (morganic) 15 1 159 T 0,019 0,122 0,163 0,000 molybdenum 100 G 40 G 3,15 2,59 1,37 2,76 nickel 100 G 500 G 3,15 2,59 1,37 2,76 potastim 723 404 302 335 349 900 1020 740 solentim 3 G 10 G -0.02 0.64 0.43 0.49 silver 200 T 10000 T 549 2240 710 0.21 0.01 0.20 740 280 344 286 221 0.21 0.01 0.094 0.01 0.094 0.01 0.01 0.094 0.01 0.000 T 540 220 2.0 2.0 2.0 2.0 2.0 2.0 2.0	lithium	1,600	S	20,000	S	27.7	21.3	26.3	19.1
Incruig (inorganic) I5 I I50 T 0.0190 0.312 0.163 0.208 molybdenum 100 G 40 G 3.15 2.59 1.37 2.76 nickel 100 G 500 G 35.2 71.0 57.2 58.3 phosphorus - 400 90.0 1020 7.00 57.2 58.3 phosphorus - 400 90.0 1020 7.00 57.2 58.3 0.00 7.00 57.2 58.3 0.00 7.00 59.1 0.01 0.00 7.00<	magnesium	·				2030	4490	3290	2920
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	manganese	1,800	S	19,000	S	335	339	305	294
Inckel 100 G 500 G 35.2 71.0 57.2 58.3 phosphorus 723 404 392 326 phosphorus 3 G 10 G -20.0 0.64 0.43 0.49 sclenium 3 G 100 G -0.20 0.64 0.43 0.49 solum (ion) 200 T 100.00 T 540 240 340 2280 strontum (isable) 47,000 S 100,000 S 444 286 221 0.12 0.12 0.20 2.0 0.20 0.04 0.44 tin 50 G 300 G 2.00 2.0 2.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.04 0.14 0.010 0.011 0.014 0.010 0.014 0.010 0.014 0.010 0.011 0.014 0.011 0.014	mercury (inorganic)	15	Ι	150	Т	0.0190	0.312	0.163	0.206
phosphoras 723 404 392 326 potassium 3 G 10 G -20.0 743 silver 20 G 40 G 0.11 0.12 0.12 sodium (soh) 200 T 1000 T 540 240 340 220 storatim (stable) 47,000 S 100,000 S 444 286 221 -0.11 timium 50 G 300 G -2.0	molybdenum	10	G	40	G	3.15	2.59	1.37	2.76
phosphoras 723 404 392 326 potassium 3 G 10 G -20.0 743 silver 20 G 40 G 0.11 0.12 0.12 sodium (soh) 200 T 1000 T 540 240 340 220 storatim (stable) 47,000 S 100,000 S 444 286 221 -0.11 timium 50 G 300 G -2.0	-	100	G	500		35.2	71.0	57.2	58.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	phosphorus					723	404	392	326
silver 20 G 40 G 0.11 0.12 0.12 0.12 0.201 softmut (ion) 2000 T 100000 T $\frac{540}{240}$ $\frac{340}{240}$ $\frac{200}{240}$ $\frac{340}{240}$ $\frac{200}{240}$ $\frac{340}{240}$ $\frac{200}{240}$ $\frac{340}{240}$ $\frac{200}{240}$ $\frac{210}{240}$ $\frac{210}{24$						480	910	1020	740
silver 20 G 40 G 0.11 0.12 0.12 0.01 sodium (ion) 200 T 100.00 T 540 240 340 280 strontum (sable) 47.000 S 100.000 S 444 286 221 215 thallium	selenium	3	G	10	G	< 0.20	0.64	0.43	0.49
strontinu (stable) $47,000$ s $100,000$ s 444 286 221 215 thallium 50 G 300 G $<0,050$ 0.170 0.094 0.148 tin 50 G 300 G <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	silver	20		40		0.11	0.12	0.12	< 0.10
thalium -200 -0.050 0.170 0.094 0.148 tin 50 G 300 G -2.0 <th< td=""><td>sodium (ion)</td><td>200</td><td>Т</td><td>1000</td><td>Т</td><td>540</td><td>240</td><td>340</td><td>280</td></th<>	sodium (ion)	200	Т	1000	Т	540	240	340	280
hallium - - - - - 0.050 0.170 0.094 0.148 tin - 50 G 300 G -2.0 <	strontium (stable)	47,000	S	100,000	S	444	286	221	215
titanium 16 S 1960 465 1100 731 vrandium 200 G 1.34 0.539 0.541 0.610 zinc 150 - 450 D/T/pH 150 - 600 D/T/pH 12.1 37.2 34.5 33.4 EXPractable Hydrocarbons Image: Constraint of the system of the syste		LA				< 0.050	0.170	0.094	0.148
uranium vanadium 16 S 200 S 1.34 0.539 0.541 0.610 zinc 200 G 150 - 450 D/T/pH 150 - 600 D/T/pH 12.1 37.2 34.5 33.4 Extractable Hydrocarbons I.000 G 2,000 G -200 1,610 560 1210 EPH _{C19.32} 1.000 G 2,000 G -200 1,610 560 1,200 LEPHs 1,000 G 2,000 G -200 1,590 550 1,200 LEPHs 1,000 G 2,000 G -200 1,590 550 1,200 MEPHs 1,000 G 5,000 G -200 2,340 840 1,610 acenaphthene 0,000 G 5,000 G -200 -0,050 -0,20 -0,050 -0,20 -0,050 -0,20 -0,050 -0,210 -0,050 -0,212 -0,050 -0,212 -0,050 <td>tin</td> <td>50</td> <td>G</td> <td>300</td> <td>G</td> <td><2.0</td> <td><2.0</td> <td><2.0</td> <td><2.0</td>	tin	50	G	300	G	<2.0	<2.0	<2.0	<2.0
uranium vanadium 16 S 200 S 1.34 0.539 0.541 0.610 zinc 200 G 150 - 450 D/T/pH 150 - 600 D/T/pH 12.1 37.2 34.5 33.4 Extractable Hydrocarbons I.000 G 2,000 G -200 1,610 560 1210 EPH _{C19.32} 1.000 G 2,000 G -200 1,610 560 1,200 LEPHs 1,000 G 2,000 G -200 1,590 550 1,200 LEPHs 1,000 G 2,000 G -200 1,590 550 1,200 MEPHs 1,000 G 5,000 G -200 2,340 840 1,610 acenaphthene 0,000 G 5,000 G -200 -0,050 -0,20 -0,050 -0,20 -0,050 -0,20 -0,050 -0,210 -0,050 -0,212 -0,050 -0,212 -0,050 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
vanadium zinc 200 G 150 - 450 Image: constraint of the second		16	S	200	S				0.610
zinc 150 - 450 D/T/pH 150 - 600 D/T/pH 12.1 37.2 34.5 33.4 Extractable Hydrocarbons I.000 G 2,000 G -200 1,610 560 1,210 EPH _{C19.9} I.000 G 2,000 G -200 1,610 560 1,210 EPH _{C19.92} I.000 G 2,000 G -200 1,590 550 1,200 LEPHs 1,000 G 2,000 G -200 1,590 550 1,200 dcenaphthen 3,000 G -200 2,340 840 1,610 accnaphthene I G 2,000 G -200 2,340 840 1,610 accnaphthylene I I G 100 G -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -2					~				
Extractable Hydrocarbons I.000 G 2,000 G -200 1,610 560 1,210 EPH _{C10.19} I.000 G 2,000 G -200 1,610 560 1,210 LEPH _S I.000 G 2,000 G -200 1,590 550 1,200 LEPHs I.000 G 2,000 G -200 2,340 840 1,610 Polycyclic Aromatic Hydrocarbons acenaphthylene -				150 - 600	D/T/pH				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					_, _, r				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Extractable Hydrocarbons								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.000	G	2.000	G	<200	1.610	560	1,210
LEPHs 1,000 G 2,000 G <200 1,590 550 1,200 HEPHs 1,000 G 5,000 G <200				· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
HEPHs 1,000 G 5,000 G <200 2,340 840 1,610 Polycyclic Aromatic Hydrocarbons acenaphthene <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td></t<>									· · · · · · · · · · · · · · · · · · ·
Polycyclic Aromatic Hydrocarbons Construction				,					
accuraphthene accuraphthylene anthracene < 0.050 < 0.20 < 0.050 < 0.20 < 0.050 < 0.20 acenaphthylene anthracene1G < 0.050 < 0.050 < 0.40 < 0.090 < 0.420 benzo(a)anthracene1G10G 0.077 < 0.050 < 0.222 < 0.438 benzo(a)pyrene1T10T < 0.050 0.242 0.168 0.163 benzo(b)fluoranthene1G10G < 0.050 0.242 0.168 0.163 benzo(k)fluoranthene1G10G < 0.050 0.242 0.168 0.163 benzo(k)fluoranthene1G10G < 0.050 < 0.20 0.088 0.088 benzo(k)fluoranthene1G10G < 0.050 < 0.20 0.088 0.088 benzo(k)fluoranthene1G10G < 0.050 < 0.050 < 0.050 < 0.050 chrasene1G10G < 0.053 0.606 0.231 0.393 fluoranthene < 0.050 < 0.050 < 0.050 < 0.050 fluorene1G10G < 0.050 < 0.098 < 0.050 < 0.055 2-methylnaphthalene1G10G < 0.050 < 0.098 < 0.050 < 0.055	1121 115	1,000	U	5,000	U	<200	2,340	040	1,010
accuraphthene accuraphthylene anthracene < 0.050 < 0.20 < 0.050 < 0.20 < 0.050 < 0.20 acenaphthylene anthracene1G < 0.050 < 0.050 < 0.40 < 0.090 < 0.420 benzo(a)anthracene1G10G 0.077 < 0.050 < 0.222 < 0.438 benzo(a)pyrene1T10T < 0.050 0.242 0.168 0.163 benzo(b)fluoranthene1G10G < 0.050 0.242 0.168 0.163 benzo(k)fluoranthene1G10G < 0.050 0.242 0.168 0.163 benzo(k)fluoranthene1G10G < 0.050 < 0.20 0.088 0.088 benzo(k)fluoranthene1G10G < 0.050 < 0.20 0.088 0.088 benzo(k)fluoranthene1G10G < 0.050 < 0.050 < 0.050 < 0.050 chrasene1G10G < 0.053 0.606 0.231 0.393 fluoranthene < 0.050 < 0.050 < 0.050 < 0.050 fluorene1G10G < 0.050 < 0.098 < 0.050 < 0.055 2-methylnaphthalene1G10G < 0.050 < 0.098 < 0.050 < 0.055	Polyovalia Aromatia Hydrogarhous								
acenaphtylene anthracene $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$						<0.050	~0.20	~0.050	~0.20
antracene benzo(a)anthracene1G10G 0.050 0.628 0.251 0.429 benzo(a)anthracene1G10G 0.077 1.04 0.275 0.438 benzo(a)pyrene1G10T <0.050 0.242 0.168 0.163 benzo(b)fluoranthene1G10G <0.050 0.495 0.279 0.364 benzo(g,h,i)perylene <0.050 <0.20 0.088 0.088 benzo(k)fluoranthene1G10G <0.050 <0.30 <0.070 <0.066 chrysene1G10G <0.050 <0.050 <0.050 <0.050 <0.050 fluoranthene1G10G <0.050 <0.050 <0.050 <0.050 <0.050 fluoranthene1G10G <0.050 <0.050 <0.050 <0.050 <0.050 fluoranthene1G10G <0.050 <0.050 <0.050 <0.050 <0.050 fluorene <0.050 <0.050 <0.050 <0.050 <0.050 indeno(1,2,3-c,d)pyrene1G10G <0.050 0.098 <0.050 <0.050 2-methylnaphthalene1G10G <0.050 <0.050 <0.050 <0.050									
benzo(a)anthracene 1 G 10 G 0.077 1.04 0.275 0.438 benzo(a)pyrene 1 T 10 T <0.050	1 2								
benzo(a)pyrene 1 T 10 T <0.050 0.242 0.168 0.163 benzo(b)fluoranthene 1 G 10 G <0.050		1	G	10	G				
benzo(b)fluoranthene 1 G 10 G <0.050 0.495 0.279 0.364 benzo(g,h,i)perylene 1 G 10 G <0.050									
benzo(g,h,i)perylene 0.050 <0.20 0.088 0.088 0.088 benzo(k)fluoranthene 1 G 10 G		-							
benzo(k)fluoranthene 1 G 10 G <0.050 <0.30 <0.070 <0.066 chrysene 1 G 10 G 0.063 0.774 0.236 0.384 dibenz(a,h)anthracene 1 G 10 G <0.050		1	U	10	U				
chrysene 0.063 0.774 0.236 0.384 dibenz(a,h)anthracene 1 G 10 G <0.050		1	G	10	G				
diberz(a,h)anthracene 1 G 10 G <0.050		1	J	10	U				
fluoranthene 0.053 0.606 0.231 0.393 fluorene 0.053 0.0050 <0.30	-	1	C	10	C				
fluorene <th< td=""><td></td><td>1</td><td>U</td><td>10</td><td>G</td><td></td><td></td><td></td><td></td></th<>		1	U	10	G				
indeno(1,2,3-c,d)pyrene 1 G 10 G <0.050 0.098 <0.050 0.055 2-methylnaphthalene 1.25 17.6 5.70 14.5									
2-methylnaphthalene 1.25 17.6 5.70 14.5		1	C	10	C				
		1	U	10	G				
			C	50	C				
	*								10.9
	*								2.85
pyrene 10 G 100 G 0.067 0.747 0.330 0.497	pyrene	10	G	100	G	0.067	0.747	0.330	0.497

Results are expressed in micrograms per gram (ug/g), unless otherwise indicated.

Standards shown are from the Contaminated Sites Regulation (CSR), enacted in 1997, and updated to March 2013.

SCN = sample control number

Land Use abbreviations: PL (Urban Park Land); IL (Industrial Land)

MCS: most conservative standard based on applicable site-specific standards

Referenced site-specific factors include: I = Intake of Contaminated Soil; T = Toxicity to Invertebrates and Plants; AW = Groundwater Flow to Surface Water used by Aquatic Life; F = Fresh Water Aquatic Life; DW = Drinking Water; G = Generic; S = Schedule 10; pH = standard is pH dependent QA/QC = quality assurance/quality control FDA = Field Duplicate Available; FD = Field Duplicate < = less than EPH_{C10-19} = extractable petroleum hydrocarbons, carbon range 10-19; used as an indicator for LEPH EPH_{C10-32} = extractable petroleum hydrocarbons, carbon range 19-32; used as an indicator for HEPH LEPHs = light extractable petroleum hydrocarbons HEPHs = heavy extractable petroleum hydrocarbons

Sodium (ion) concentrations are highlighted, italicized and underlined as results based on ICP-MS analysis, which typicall yields much higher concentrations than recommended Saturated Paste Method.

Table 2: Results of Soil Leachate Analyses - TCLP (Metals, B[a]P) Nanaimo Colliery Dams Nanaimo, BC

Sample Identification Depth (metres beloow ground surface) SCN Date Sampled	HWR Leachate Quality Standards	SH14-05 SA E1 0.76 - 1.15 10-368952 #1 11-Feb-14	SH14-05 SA E3 3.69 - 4.00 10-368952 #3 11-Feb-14	SH14-05 SA E5 6.77 - 7.08 10-368952 #5 11-Feb-14
Polycyclic Aromatic Hydrocarbons				
1st Preliminary pH (pH units) 2nd Preliminary pH (pH units) Extractable Solution Initial pH (pH units) Final pH (pH units)			9.18 1.73 4.91 5.52	
benzo(a)pyrene	0.001	-	<0.00050	-
TCLP Metals				
1st Preliminary pH (pH units) 2nd Preliminary pH (pH units) Extractable Solution Initial pH (pH units) Final pH (pH units)		9.44 5.10 2.86 5.09	8.99 1.77 4.89 5.37	7.87 1.67 4.89 5.06
antimony arsenic barium beryllium boron cadmium calcium chromium cobalt copper iron lead magnesium mercury nickel selenium silver thallium	$ \begin{array}{r} 2.5 \\ 100 \\ 500 \\ 0.5 \\ \hline 5 \\ 100 \\ 5 \\ 0.1 \\ \hline 1 \\ 5 \\ \hline \end{array} $	$<1.0 \\<1.0 \\<2.5 \\<0.025 \\0.79 \\<0.050 \\1480 \\<0.25 \\<0.050 \\<0.050 \\<0.050 \\<0.050 \\<0.15 \\<0.25 \\3.35 \\<0.0010 \\<0.25 \\<1.0 \\<0.050 \\<1.0$	$<1.0 \\<1.0 \\<2.5 \\<0.025 \\<0.50 \\<0.050 \\372 \\<0.25 \\<0.050 \\<0.050 \\<0.050 \\<0.15 \\<0.25 \\6.28 \\<0.0010 \\<0.25 \\<1.0 \\<0.050 \\<1.0$	$<1.0 \\<1.0 \\<2.5 \\<0.025 \\<0.50 \\<0.050 \\293 \\<0.25 \\<0.050 \\<0.050 \\0.33 \\<0.25 \\4.32 \\<0.0010 \\<0.25 \\4.32 \\<1.0 \\<0.050 \\<1.0$
vanadium zinc	500	<0.15 <0.50	<0.15 <0.50	<0.15 <0.50

Notes:

Results are expressed in milligrams per liter (mg/L), unless otherwise indicated.

Standards shown are from the Hazardous Waste Regulation (HWR), enacted in 1988 and updated to April 2009.

SCN = sample control number

"<" = less than; "-" = not tested

TCLP = Toxicity Characteristic Leaching Procedure

Table 3: Results of Soil Analyses - Other HWR Tests Nanaimo Colliery Dams Nanaimo, BC

Sample Identification Depth (metres, below ground surface) SCN Date Sampled QA/QC	SH14-05 SA E1 0.76 - 1.15 10-368952 #1 11-Feb-14 Discrete	SH14-05 SA E3 3.69 - 4.00 10-368952 #3 11-Feb-14 Discrete	SH14-05 SA E5 6.77 - 7.08 10-368952 #5 11-Feb-14 Discrete	SH14-04/05/06 Various L1424625-1 11 to 14-Feb-14 Composite
QA/QC	Disciele	Disciele	Disciele	Composite
Polycyclic Aromatic Hydrocarbons				
acenaphthene	< 0.050	<0.20	< 0.050	<0.20
acenaphthylene	<0.050	<0.20 <0.40	<0.030	<0.20 <0.40
anthracene	<0.050	<0.40 0.628	<0.090	<0.40 0.429
benzo(a)anthracene	<0.030	1.04	0.231	0.429
				0.438
benzo(a)pyrene	<0.050	0.242	0.168	0.2.00
benzo(b)fluoranthene	<0.050	0.495	0.279	0.364
benzo(g,h,i)perylene	<0.050	<0.20	0.088	0.088
benzo(k)fluoranthene	<0.050	<0.30	<0.070	< 0.060
chrysene	0.063	0.774	0.236	0.384
dibenz(a,h)anthracene	< 0.050	< 0.050	< 0.050	< 0.050
fluoranthene	0.053	0.606	0.231	0.393
fluorene	< 0.050	<0.30	< 0.20	< 0.30
indeno(1,2,3-c,d)pyrene	< 0.050	0.098	< 0.050	0.055
2-methylnaphthalene	1.25	17.6	5.70	14.5
naphthalene	0.891	12.3	3.78	10.9
phenanthrene	0.335	4.25	1.74	2.85
pyrene	0.067	0.747	0.330	0.497
Calculated PAH TEQ	0.133	0.500	0.295	0.315
HWR PAH TEQ	100	100	100	100
Extractable Hydrocarbons				
EPH _{C10-19}	<200	1610	560	1210
EPH _{C19-32}	<200	2340	840	1620
LEPHs	<200	1590	550	1200
HEPHs	<200	2340	840	1610
Sum (EPH)	<400	3950	1400	2830
HWR (Waste Oil)	30,000	30,000	30,000	30,000

Notes:

Results are expressed in micrograms per gram (ug/g), unless otherwise indicated.

Standards shown are from the Hazardous Waste Regulation (HWR), enacted in 1988, and updated to 2009.

SCN = sample control number

< = less than

TEQ = Toxicity Equivalence Factor

PAH TEQ = Sum (PAH Constituent Concentration * TEF for PAH Constituent)

PAH TEQ = Sum([BaA]*0.1+[BaP]*1+[BbF]*0.1+[BkF]*0.1+[D(a,h)A]*1.1+[I(1,2,3-cd)P]*0.2)

EPH_{C10-19} = extractable petroleum hydrocarbons, carbon range 10-19; used as an indicator for LEPH

EPH_{C19-32} = extractable petroleum hydrocarbons, carbon range 19-32; used as an indicator for HEPH

LEPHs = light extractable petroleum hydrocarbons

HEPHs = heavy extractable petroleum hydrocarbons

Sum (EPH) used as an indicator of oil and grease concentrations

HWR Waste Oil = 3 % or 30,000 micrograms per gram of oil

Table 4: Results of Soil Leachate Analyses - SPLP Nanaimo Colliery Dams Nanaimo, BC

Sample Identification Depth (metres, below ground surface) SCN Date Sampled QA/QC	Aquatic Life (freshwater) (CSR AWf)	Notes	BC Water Quality Guidelines (BCWQG - fresh)	Notes	SH14-04/05/06 Various L1424625-1 11 to 14-Feb-14 Composite
SPLP Test Results					
Metals					
aluminum			20 - 100	pН	<200
antimony	200				<200
arsenic	50		5		3.09
barium	10,000				<500
beryllium	53				<5
bismuth					<200
boron	50,000		1,200		<100
cadmium	0.1-1.3	Н			<10
calcium					134000
chromium	10 ^{VI} , 90 ^{III}	V			<50
cobalt	40		110		<10
copper	20-90	Н	Calculation	Н	<10
iron					<30
lead	40-160	Н	3 - 330	Н	<50
lithium					<10
magnesium					1470
manganese			800 - 3,800	Н	<5
mercury	1		0.1		<1
molybdenum	10,000		2,000		<30
nickel	250-1,500	Н	· · · · · · · · · · · · · · · · · · ·		<50
phosphorus			5 - 15		<300
potassium					<2000
selenium	10		2		<200
silicon					3090
silver	0.5-15	Н	0.1 - 3		<50
sodium					<2000
strontium					437
thallium	3				<200
tin					<30
titanium	1,000				14
uranium	3,000				-
vanadium					<30
zinc	75-3,150	Н	33 - 265	Н	<100
Polycyclic Aromatic Hydrocarbons					
acenaphthene	60		6		< 0.020
acenaphthylene					< 0.020
anthracene	1		0.1 - 4		< 0.020
benzo(a)anthracene	1		0.1		<0.020
benzo(a)pyrene	0.1		0.01		<0.010
benzo(b)fluoranthene					< 0.020
benzo(g,h,i)perylene					< 0.020
benzo(k)fluoranthene					< 0.020
chrysene	1				< 0.020
dibenzo(a,h)anthracene					<0.020
fluoranthene	2		0.2 - 4		<0.020
fluorene	120		12		<0.020
indeno(1,2,3-c,d)pyrene					< 0.020
1-methylnaphthalene					0.026
2-methylnaphthalene	10				0.031
naphthalene	10		1		0.046
phenanthrene	<u> </u>		0.3		0.026 <0.020
pyrene					

Results are expressed in micrograms per liter (ug/L), unless otherwise indicated.

Standards and guidelines shown are from the Contaminated Sites Regulation (CSR), enacted in 1997 and updated to 2013; and BC Water Quality Guidelines (Approved), updated to August 2006. (max value)

SCN = sample control number

"<" = less than; "-" = not tested

SPLP = Synthetic Precipitation Leaching Procedure

Bold and italicized results indicate detection limit exceeds standard/guideline therefore interpretation is not possible.

ATTACHMENT 1

Certificate of Analysis - ALS

GOLDER ASSOCIATES LTD. ATTN: Jim Laidlaw # 500 - 4260 Still Creek Drive Burnaby BC V5C 6C6 Date Received:20-FEB-14Report Date:18-MAR-14 14:15 (MT)Version:FINAL REV. 3

Client Phone: 604-298-6623

Certificate of Analysis

Lab Work Order #: L1424625

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 13-1447-0516

Comments: The composite sample in this report was created with equal volumes of the following samples:

L1421658 - 1, 2, 3, 4, 5 L1423043 - 1, 2, 3 L1423044 - 1, 2

11-MAR-2014 SPLP Arsenic has been re-processed to provide a lower detection limit. 18-MAR-2014 Grain Size Analysis added, see end of report.

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1424625 CONTD.... PAGE 2 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

			 	 -	FINAL RE
	Sample ID Description Sampled Date Sampled Time Client ID	L1424625-1 Soil COMPOSITE			
Grouping	Analyte				
SOIL	Analyte				
Physical Tests	Grain Size Curve	SEE ATTACHED			
	Moisture (%)	19.2			
	pH (1:2 soil:water) (pH)	8.17			
Metals	Aluminum (Al) (mg/kg)	15400			
	Antimony (Sb) (mg/kg)	0.67			
	Arsenic (As) (mg/kg)	49.6			
	Barium (Ba) (mg/kg)	229			
	Beryllium (Be) (mg/kg)	0.51			
	Bismuth (Bi) (mg/kg)	<0.20			
	Cadmium (Cd) (mg/kg)	0.108			
	Calcium (Ca) (mg/kg)	34000			
	Chromium (Cr) (mg/kg)	31.1			
	Cobalt (Co) (mg/kg)	10.1			
	Copper (Cu) (mg/kg)	47.5			
	Iron (Fe) (mg/kg)	20200			
	Lead (Pb) (mg/kg)	8.56			
	Lithium (Li) (mg/kg)	19.1			
	Magnesium (Mg) (mg/kg)	2920			
	Manganese (Mn) (mg/kg)	294			
	Mercury (Hg) (mg/kg)	0.206			
	Molybdenum (Mo) (mg/kg)	2.76			
	Nickel (Ni) (mg/kg)	58.3			
	Phosphorus (P) (mg/kg)	326			
	Potassium (K) (mg/kg)	740			
	Selenium (Se) (mg/kg)	0.49			
	Silver (Ag) (mg/kg)	<0.10			
	Sodium (Na) (mg/kg)	280			
	Strontium (Sr) (mg/kg)	215			
	Thallium (TI) (mg/kg)	0.148			
	Tin (Sn) (mg/kg)	<2.0			
	Titanium (Ti) (mg/kg)	731			
	Uranium (U) (mg/kg)	0.610			
	Vanadium (V) (mg/kg)	101			
	Zinc (Zn) (mg/kg)	33.4			
SPLP Metals	Extraction Solution Initial pH (pH)	4.99			
	Final pH (pH)	7.67			

L1424625 CONTD.... PAGE 3 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

Sample ID	L1424625-1					
Description Sampled Date Sampled Time	Soil					
Client ID	COMPOSITE					
Analyte						
Aluminum (Al)-Leachable (mg/L)	<0.20					
Antimony (Sb)-Leachable (mg/L)						
Arsenic (As)-Leachable (mg/L)						
Barium (Ba)-Leachable (mg/L)						
Beryllium (Be)-Leachable (mg/L)						
Bismuth (Bi)-Leachable (mg/L)						
Boron (B)-Leachable (mg/L)						
Cadmium (Cd)-Leachable (mg/L)	<0.010					
Calcium (Ca)-Leachable (mg/L)	134					
Chromium (Cr)-Leachable (mg/L)	<0.050					
Cobalt (Co)-Leachable (mg/L)	<0.010					
Copper (Cu)-Leachable (mg/L)	<0.010					
Iron (Fe)-Leachable (mg/L)	<0.030					
Lead (Pb)-Leachable (mg/L)	<0.050					
Lithium (Li)-Leachable (mg/L)	<0.010					
Magnesium (Mg)-Leachable (mg/L)	1.47					
Manganese (Mn)-Leachable (mg/L)	<0.0050					
Mercury (Hg)-Leachable (mg/L)	<0.0010					
Molybdenum (Mo)-Leachable (mg/L)	<0.030					
Nickel (Ni)-Leachable (mg/L)	<0.050					
Phosphorus (P)-Leachable (mg/L)	<0.30					
Potassium (K)-Leachable (mg/L)						
Selenium (Se)-Leachable (mg/L)						
Silicon (Si)-Leachable (mg/L)						
Silver (Ag)-Leachable (mg/L)	<0.050					
Sodium (Na)-Leachable (mg/L)	<2.0					
Strontium (Sr)-Leachable (mg/L)	0.437					
Thallium (TI)-Leachable (mg/L)	<0.20					
Tin (Sn)-Leachable (mg/L)	<0.030					
Titanium (Ti)-Leachable (mg/L)	0.014					
Vanadium (V)-Leachable (mg/L)	<0.030					
Zinc (Zn)-Leachable (mg/L)	<0.10					
EPH10-19 (mg/kg)	1210					
EPH19-32 (mg/kg)	1620					
LEPH (mg/kg)	1200					
HEPH (mg/kg)	1610					
	Analyte Aluminum (Al)-Leachable (mg/L) Antimony (Sb)-Leachable (mg/L) Arsenic (As)-Leachable (mg/L) Barium (Ba)-Leachable (mg/L) Barium (Ba)-Leachable (mg/L) Beryllium (Be)-Leachable (mg/L) Boron (B)-Leachable (mg/L) Boron (B)-Leachable (mg/L) Cadmium (Cd)-Leachable (mg/L) Calcium (Cd)-Leachable (mg/L) Cobalt (Co)-Leachable (mg/L) Cobalt (Co)-Leachable (mg/L) Copper (Cu)-Leachable (mg/L) Lead (Pb)-Leachable (mg/L) Lead (Pb)-Leachable (mg/L) Manganese (Mn)-Leachable (mg/L) Manganese (Mn)-Leachable (mg/L) Molybdenum (Mo)-Leachable (mg/L) Nickel (Ni)-Leachable (mg/L) Nickel (Ni)-Leachable (mg/L) Phosphorus (P)-Leachable (mg/L) Selenium (Se)-Leachable (mg/L) Silicon (Si)-Leachable (mg/L) Silicon (Si)-Leachable (mg/L) Sodium (Na)-Leachable (mg/L) Silicon (Si)-Leachable (mg/L) Silic	Sampled Time Client IDAnalyteAluminum (Al)-Leachable (mg/L)<.0.20	Sampled Time Client DICOMPOSITEAnalyteAluminum (Al)-Leachable (mg/L)<0.20	Samplet Time CiteredCOMPOSITEAnalyeAunimum (Al)-Leachable (mg/L)Aunimum (Al)-Leachable (mg/L)Aunimum (Al)-Leachable (mg/L)Arsenic (As)-Leachable (mg/L)Aunimum (Ba)-Leachable (mg/L)Aunimum (Ba)-Leachable (mg/L)Aunimum (Ba)-Leachable (mg/L)Aunimum (Ca)-Leachable (mg/L)Aunimum (Ca)-Leachable (mg/L)Aunimum (Ca)-Leachable (mg/L)Aunimum (Ca)-Leachable (mg/L)Aunimum (Ca)-Leachable (mg/L)Aunimum (Ca)-Leachable (mg/L)Cobatt (Co)-Leachable (mg/L)Cobatt (Co)-Leachable (mg/L)Cobatt (Co)-Leachable (mg/L)Aunimum (Ma)-Leachable	SampleTime Citent 00 COMMONTE Aurinour, (Al)-Leachable (mg/L) -0.20 Aurinour, (Ab)-Leachable (mg/L) -0.20 Arsenic (As)-Leachable (mg/L) -0.20 Barium, (Ba)-Leachable (mg/L) -0.0000 Barium, (Ba)-Leachable (mg/L) -0.0000 Born (B)-Leachable (mg/L) -0.000 Cadmium (Ca)-Leachable (mg/L) -0.010 Cobel (Ca)-Leachable (mg/L) -0.010 Iron (Fe)-Leachable (mg/L) -0.010 Manganese (Mn/L)-Leachable (mg/L) -0.010 Manganese (Mn/L)-Leachable (mg/L) -0.010 Marcury (Hg)-Leachable (mg/L) -0.010 Morbybdenum (Mo)-Leachable (mg/L) -0.030 Nickel (N)-Leachable (mg/L) -0.030	Samplet Time Client ID COMPOSITE ComPOSITE Auuminum (Al)-Leachable (mg/L) <0.20

L1424625 CONTD.... PAGE 4 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

				Vers	ion: FINAL	REV
	Sample ID Description Sampled Date	L1424625-1 Soil				
	Sampled Time Client ID	COMPOSITE				
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.20				
-	Acenaphthylene (mg/kg)	оли 0.40				
	Anthracene (mg/kg)	0.429				
	Benz(a)anthracene (mg/kg)	0.438				
	Benzo(a)pyrene (mg/kg)	0.163				
	Benzo(b)fluoranthene (mg/kg)	0.364				
	Benzo(g,h,i)perylene (mg/kg)	0.088				
	Benzo(k)fluoranthene (mg/kg)	олы солово органие солово органие солово органие солование солование солование солование солование солование с Солование солование с				
	Chrysene (mg/kg)	0.384				
	Dibenz(a,h)anthracene (mg/kg)	<0.050				
	Fluoranthene (mg/kg)	0.393				
	Fluorene (mg/kg)	оло со станование со				
	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.055				
	2-Methylnaphthalene (mg/kg)	14.5				
	Naphthalene (mg/kg)	10.9				
	Phenanthrene (mg/kg)	2.85				
	Pyrene (mg/kg)	0.497				
	Surrogate: Acenaphthene d10 (%)	109.5				
	Surrogate: Chrysene d12 (%)	71.8				
	Surrogate: Naphthalene d8 (%)	93.1				
	Surrogate: Phenanthrene d10 (%)	81.5				
		1	1	1	1	

L1424625 CONTD.... PAGE 5 of 7 18-MAR-14 14:15 (MT) Version: FINAL REV. 3

				vers	ion:	FINAL RE
	Sample ID Description Sampled Date Sampled Time Client ID	L1424625-1 Soil COMPOSITE				
Grouping	Analyte					
WASTE						
Polycyclic Aromatic Hydrocarbons	Acenapthene (ug/L)	<0.020				
	Acenaphthylene (ug/L)	<0.020				
	Anthracene (ug/L)	<0.020				
	Benzo(a)anthracene (ug/L)	<0.020				
	Benzo(a)pyrene (ug/L)	<0.010				
	Benzo(b)fluoranthene (ug/L)	<0.020				
	Benzo(g,h,i)perylene (ug/L)	<0.020				
	Benzo(k)fluoranthene (ug/L)	<0.020				
	Chrysene (ug/L)	<0.020				
	Dibenzo(ah)anthracene (ug/L)	<0.020				
	Fluoranthene (ug/L)	<0.020				
	Fluorene (ug/L)	<0.020				
	Indeno(1,2,3-cd)pyrene (ug/L)	<0.020				
	1-Methylnaphthalene (ug/L)	0.026				
	2-Methylnaphthalene (ug/L)	0.020				
	Naphthalene (ug/L)	0.046				
	Phenanthrene (ug/L)	0.040				
	Pyrene (ug/L)	<0.020				
	Surrogate: 2-Fluorobiphenyl (%)	87.2				
	Surrogate: d14-Terphenyl (%)	98.0				
		90.0				

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)		
Matrix Spike	Calcium (Ca)-Leachable	MS-B	L1424625-1		
Matrix Spike	Magnesium (Mg)-Leachable	MS-B	L1424625-1		
Matrix Spike	Silicon (Si)-Leachable	MS-B	L1424625-1		
Matrix Spike	Strontium (Sr)-Leachable	MS-B	L1424625-1		

Qualifiers for Individual Parameters Listed:

Qualifier	Description				
DLM	Detection Limit Adjusted due to sample				

Detection Limit Adjusted due to sample matrix effects.

MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**		
EPH-TUMB-FID-VA Soil		EPH in Solids by Tumbler and GCFID	BC MOE EPH GCFID		

Analysis is in accordance with BC MOE Lab Manual method "Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil samples are extracted with a 1:1 mixture of hexane and acetone using a rotary extraction technique modified from EPA 3570 prior to gas chromatography with flame ionization detection (GC-FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

GRAIN SIZE-SK Soil Grain Size Analysis

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

Reference:

Burt, R. (2009). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 5. Method 3.2.1.2.2. United States Department of Agriculture Natural Resources Conservation Service.

HG-SPLP-CVAFS-VA Soil Mercury by CVAFS (SPLP)

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1312, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using water adjusted to pH 5.0 or pH 4.20 (Depending of the sampling location relative to the Mississippi river) by adding drops of 60/40 weight percent mixture of sulfuric and nitric acids. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and analysed using atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

HG-WW-200.2-CVAF-VA Soil

Hg in Soil by CVAFS

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, sieved (wet sample) through a 2 mm (10 mesh) sieve, and a representative subsample of the material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

LEPHs and HEPHs LEPH/HEPH-CALC-VA Soil

Light and Heavy Extractable Petroleum Hydrocarbons in Solids. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated

by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene. Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method

"Extractable Petroleum Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

MET-SPLP-ICP-VA Metals by ICPOES (SPLP) Soil

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1312, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using water adjusted to pH 5.0 or pH 4.20 (Depending of the sampling location relative to the Mississippi river) by adding drops of 60/40 weight percent mixture of sulfuric and nitric acids. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter and analyzed using inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-SPLP-MS-VA

Soil Metals by ICPMS (SPLP) EPA 1312/6020A

EPA 1312/6010B

EPA 200 2/245 7

EPA 1312/245.7

SSIR-51 METHOD 3.2.1

BC MOE LABORATORY MANUAL (2005)

Reference Information

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1312, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using water adjusted to pH 5.0 or pH 4.20 (Depending of the sampling location relative to the Mississippi river) by adding drops of 60/40 weight percent mixture of sulfuric and nitric acids. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and analysed using inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-WW-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS

EPA 200.2/6020A

ASTM D2974-00 Method A

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, sieved (wet sample) through a 2 mm (10 mesh) sieve, and a representative subsample of the material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MOISTURE-SIEVE-VA Soil Moisture for CSR Metals Calculations

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

MOISTURE-VA	Soil	Moisture content	ASTM D2974-00 Method A
-------------	------	------------------	------------------------

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PAH-SPLP-WT	Waste	Leachable PAH for O.Reg 153/04	SW846 8270
PAH-TMB-H/A-MS-VA	Soil	PAH - Rotary Extraction (Hexane/Acetone)	EPA 3570/8270

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-WW-1:2-DI-MAN-VA Soil pH in Soil (1:2 Soil:Water Ext.) (WET)

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the wet sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water, where the samples moisture is accounted for. The pH of the solution is then measured using a standard pH probe.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L1424625	s Re	eport Date:	18-MAR-14	Pa	ge 1 of 13
Oliciti.	# 500 - 42	ASSOCIATES 260 Still Creek E BC V5C 6C6							
Contact:	Jim Laidla	aw							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EPH-TUMB-FID-V	Ά	Soil							
Batch R WG1836681-3 EPH10-19	2796505 IRM		ALS PHC2 R	// 101.8		%		70-130	27-FEB-14
EPH19-32				102.9		%		70-130	27-FEB-14
WG1836681-1 EPH10-19	МВ			<200		mg/kg		200	27-FEB-14
EPH19-32				<200		mg/kg		200	27-FEB-14
HG-SPLP-CVAFS	-VA	Soil							
	2797307	••••							
WG1835844-2 Mercury (Hg)-I	DUP		L1424625-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	30	26-FEB-14
WG1835844-1 Mercury (Hg)-I	MB Leachable			<0.0010		mg/L		0.001	26-FEB-14
WG1835844-3 Mercury (Hg)-I	-		L1424625-1	100.3		%		70-130	26-FEB-14
HG-WW-200.2-CV	/AF-VA	Soil							
	2797904								
WG1836549-14 Mercury (Hg)	4 CRM		VA-CANMET-	TILL1 96.4		%		70-130	27-FEB-14
WG1836549-1 Mercury (Hg)	5 CRM		VA-NRC-STS	D1 95.4		%		70-130	27-FEB-14
WG1836549-1 Mercury (Hg)	1 MB			<0.0050		mg/kg		0.005	27-FEB-14
WG1836549-12 Mercury (Hg)	2 MB			<0.0050		mg/kg		0.005	27-FEB-14
MET-SPLP-ICP-V	Α	Soil							
Batch R	2797349								
WG1835844-2 Aluminum (Al)		e	L1424625-1 <0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Antimony (Sb)			<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Barium (Ba)-L	eachable		<0.50	<0.50	RPD-NA	mg/L	N/A	30	26-FEB-14
Beryllium (Be)	-Leachabl	е	<0.0050	<0.0050	RPD-NA	mg/L	N/A	30	26-FEB-14
Bismuth (Bi)-L	eachable		<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Boron (B)-Lea	chable		<0.10	<0.10	RPD-NA	mg/L	N/A	30	26-FEB-14
Cadmium (Cd))-Leachab	le	<0.010	<0.010	RPD-NA	mg/L	N/A	30	26-FEB-14
Calcium (Ca)-	Leachable		134	131		mg/L	2.2	30	26-FEB-14
Chromium (Cr)-Leachab	le	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Cobalt (Co)-Le	eachable		<0.010	<0.010	RPD-NA	mg/L	N/A	30	26-FEB-14

	Workorde	er: L142462	5 Re	eport Date: 1	8-MAR-14	Р	age 2 of 13
Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-ICP-VA So	bil						
Batch R2797349							
WG1835844-2 DUP	L1424625-						
Copper (Cu)-Leachable	<0.010	<0.010	RPD-NA	mg/L	N/A	30	26-FEB-14
Iron (Fe)-Leachable	<0.030	<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Lead (Pb)-Leachable	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Lithium (Li)-Leachable	<0.010	0.010	RPD-NA	mg/L	N/A	30	26-FEB-14
Magnesium (Mg)-Leachable		1.47		mg/L	0.1	30	26-FEB-14
Manganese (Mn)-Leachable		<0.0050	RPD-NA	mg/L	N/A	30	26-FEB-14
Molybdenum (Mo)-Leachabl		<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Nickel (Ni)-Leachable	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Phosphorus (P)-Leachable	<0.30	<0.30	RPD-NA	mg/L	N/A	30	26-FEB-14
Potassium (K)-Leachable	<2.0	<2.0	RPD-NA	mg/L	N/A	30	26-FEB-14
Selenium (Se)-Leachable	<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Silicon (Si)-Leachable	3.09	3.10		mg/L	0.2	30	26-FEB-14
Silver (Ag)-Leachable	<0.050	<0.050	RPD-NA	mg/L	N/A	30	26-FEB-14
Sodium (Na)-Leachable	<2.0	<2.0	RPD-NA	mg/L	N/A	30	26-FEB-14
Strontium (Sr)-Leachable	0.437	0.437		mg/L	0.1	30	26-FEB-14
Thallium (TI)-Leachable	<0.20	<0.20	RPD-NA	mg/L	N/A	30	26-FEB-14
Tin (Sn)-Leachable	<0.030	<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Titanium (Ti)-Leachable	0.014	0.014		mg/L	4.4	30	26-FEB-14
Vanadium (V)-Leachable	<0.030	<0.030	RPD-NA	mg/L	N/A	30	26-FEB-14
Zinc (Zn)-Leachable	<0.10	<0.10	RPD-NA	mg/L	N/A	30	26-FEB-14
WG1835844-1 MB Aluminum (Al)-Leachable		<0.20		mg/L		0.2	26-FEB-14
Antimony (Sb)-Leachable		<0.20		mg/L		0.2	26-FEB-14
Barium (Ba)-Leachable		<0.50		mg/L		0.5	26-FEB-14
Beryllium (Be)-Leachable		< 0.0050		mg/L		0.005	26-FEB-14
Bismuth (Bi)-Leachable		<0.20		mg/L		0.2	26-FEB-14
Boron (B)-Leachable		<0.10		mg/L		0.2	26-FEB-14
Cadmium (Cd)-Leachable		<0.010		mg/L		0.01	26-FEB-14
Calcium (Ca)-Leachable		< 0.050		mg/L		0.05	26-FEB-14
Chromium (Cr)-Leachable		<0.050		mg/L		0.05	26-FEB-14
Cobalt (Co)-Leachable		<0.000		mg/L		0.03	26-FEB-14
Copper (Cu)-Leachable		<0.010		mg/L		0.01	26-FEB-14
Iron (Fe)-Leachable		<0.030		mg/L		0.01	26-FEB-14 26-FEB-14
Lead (Pb)-Leachable		<0.050		mg/L		0.05	26-FEB-14 26-FEB-14

		Workorder:	L142462	5	Report Date: 1	8-MAR-14	Pa	age 3 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-ICP-VA	Soil							
Batch R2797349								
WG1835844-1 MB			0.040					
Lithium (Li)-Leachable			<0.010		mg/L		0.01	26-FEB-14
Magnesium (Mg)-Leachal			<0.10		mg/L		0.1	26-FEB-14
Manganese (Mn)-Leacha			<0.0050		mg/L		0.005	26-FEB-14
Molybdenum (Mo)-Leacha	adie		<0.030		mg/L		0.03	26-FEB-14
Nickel (Ni)-Leachable			<0.050		mg/L		0.05	26-FEB-14
Phosphorus (P)-Leachabl			<0.30		mg/L		0.3	26-FEB-14
Potassium (K)-Leachable			<2.0		mg/L		2	26-FEB-14
Selenium (Se)-Leachable	1		<0.20		mg/L		0.2	26-FEB-14
Silicon (Si)-Leachable			<0.050		mg/L		0.05	26-FEB-14
Silver (Ag)-Leachable			<0.050		mg/L		0.05	26-FEB-14
Sodium (Na)-Leachable			<2.0		mg/L		2	26-FEB-14
Strontium (Sr)-Leachable			<0.0050		mg/L		0.005	26-FEB-14
Thallium (TI)-Leachable			<0.20		mg/L		0.2	26-FEB-14
Tin (Sn)-Leachable			<0.030		mg/L		0.03	26-FEB-14
Titanium (Ti)-Leachable			<0.010		mg/L		0.01	26-FEB-14
Vanadium (V)-Leachable			<0.030		mg/L		0.03	26-FEB-14
Zinc (Zn)-Leachable			<0.10		mg/L		0.1	26-FEB-14
WG1835844-3 MS Aluminum (Al)-Leachable		L1424625-1	106.9		%		70-130	26-FEB-14
Antimony (Sb)-Leachable			103.4		%		70-130	26-FEB-14
Beryllium (Be)-Leachable			101.4		%		70-130	26-FEB-14
Bismuth (Bi)-Leachable			104.2		%		70-130	26-FEB-14
Boron (B)-Leachable			106.8		%		70-130	26-FEB-14
Cadmium (Cd)-Leachable	9		101.8		%		70-130	26-FEB-14
Calcium (Ca)-Leachable			N/A	MS-B	%		-	26-FEB-14
Chromium (Cr)-Leachable	Э		102.9		%		70-130	26-FEB-14
Cobalt (Co)-Leachable			102.9		%		70-130	26-FEB-14
Copper (Cu)-Leachable			105.8		%		70-130	26-FEB-14
Iron (Fe)-Leachable			112.8		%		70-130	26-FEB-14
Lead (Pb)-Leachable			100.5		%		70-130	26-FEB-14
Lithium (Li)-Leachable			112.6		%		70-130	26-FEB-14
Magnesium (Mg)-Leachal	ble		N/A	MS-B	%		-	26-FEB-14
Manganese (Mn)-Leacha			102.3		%		70-130	26-FEB-14
Molybdenum (Mo)-Leach			102.0		%		70-130	26-FEB-14

		Workorder:	L142462	5 R	Report Date: 1	8-MAR-14	Pa	ge 4 of ^r
lest .	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-ICP-VA	Soil							
Batch R2	2797349							
WG1835844-3	MS	L1424625-1						
Nickel (Ni)-Lead			102.1		%		70-130	26-FEB-14
Phosphorus (P)			104.1		%		70-130	26-FEB-14
Potassium (K)-I			112.6		%		70-130	26-FEB-14
Selenium (Se)-I	Leachable		105.3		%		70-130	26-FEB-14
Silicon (Si)-Lea	chable		N/A	MS-B	%		-	26-FEB-14
Silver (Ag)-Lead	chable		101.6		%		70-130	26-FEB-14
Sodium (Na)-Le	eachable		102.8		%		70-130	26-FEB-14
Strontium (Sr)-L	Leachable		N/A	MS-B	%		-	26-FEB-14
Thallium (TI)-Le	eachable		101.6		%		70-130	26-FEB-14
Tin (Sn)-Leacha	able		93.5		%		70-130	26-FEB-14
Titanium (Ti)-Le	eachable		102.3		%		70-130	26-FEB-14
Vanadium (V)-L	eachable		103.7		%		70-130	26-FEB-14
Zinc (Zn)-Leach	nable		102.3		%		70-130	26-FEB-14
MET-SPLP-MS-VA	Soil							
Batch R2	2802885							
WG1835844-2	DUP	L1424625-1						
Arsenic (As)-Le	eachable	0.00309	0.00301		mg/L	2.7	30	10-MAR-14
WG1835844-1 Arsenic (As)-Le	MB eachable		<0.00010		mg/L		0.0001	10-MAR-14
WG1835844-3	MS	L1424625-1			-			-
Arsenic (As)-Le	-	211210201	106.5		%		70-130	10-MAR-14
MET-WW-200.2-CC	CMS-VA Soil							
Batch R2	2798489							
WG1837121-4	CRM	VA-CANMET						
Aluminum (Al)			99.3		%		70-130	28-FEB-14
Antimony (Sb)			87.3		%		70-130	28-FEB-14
Arsenic (As)			102.9		%		70-130	28-FEB-14
Barium (Ba)			101.4		%		70-130	28-FEB-14
Beryllium (Be)			0.43		mg/kg		0.34-0.74	28-FEB-14
Bismuth (Bi)			89.2		%		70-130	28-FEB-14
Cadmium (Cd)			88.9		%		70-130	28-FEB-14
Calcium (Ca)			91.4		%		70-130	28-FEB-14
Chromium (Cr)			103.3		%		70-130	28-FEB-14
Cobalt (Co)			98.6		%		70-130	28-FEB-14

		Workorder	: L142462	25	Report Date: 18	3-MAR-14	Page	e 5 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-VA	Soil							
Batch R2798489)							
WG1837121-4 CRM		VA-CANME						
Iron (Fe)			95.6		%		70-130	28-FEB-14
Lead (Pb)			80.9		%		70-130	28-FEB-14
Lithium (Li)			77.8		%		70-130	28-FEB-14
Magnesium (Mg)			98.5		%		70-130	28-FEB-14
Manganese (Mn)			98.8		%		70-130	28-FEB-14
Molybdenum (Mo)			0.59		mg/kg		0.24-1.24	28-FEB-14
Nickel (Ni)			99.4		%		70-130	28-FEB-14
Phosphorus (P)			96.5		%		70-130	28-FEB-14
Potassium (K)			105.8		%		70-130	28-FEB-14
Selenium (Se)			0.31		mg/kg		0.12-0.52	28-FEB-14
Silver (Ag)			0.19		mg/kg		0.12-0.32	28-FEB-14
Sodium (Na)			113.0		%		70-130	28-FEB-14
Strontium (Sr)			88.2		%		70-130	28-FEB-14
Thallium (TI)			0.104		mg/kg		0.075-0.175	28-FEB-14
Tin (Sn)			0.9		mg/kg		0-3	28-FEB-14
Titanium (Ti)			103.4		%		70-130	28-FEB-14
Uranium (U)			92.8		%		70-130	28-FEB-14
Vanadium (V)			103.5		%		70-130	28-FEB-14
Zinc (Zn)			100.1		%		70-130	28-FEB-14
WG1837121-5 CRM		VA-NRC-ST	SD1					
Aluminum (Al)			105.9		%		70-130	28-FEB-14
Antimony (Sb)			99.1		%		70-130	28-FEB-14
Arsenic (As)			102.0		%		70-130	28-FEB-14
Barium (Ba)			100.3		%		70-130	28-FEB-14
Beryllium (Be)			111.9		%		70-130	28-FEB-14
Cadmium (Cd)			100.7		%		70-130	28-FEB-14
Calcium (Ca)			105.5		%		70-130	28-FEB-14
Chromium (Cr)			102.6		%		70-130	28-FEB-14
Cobalt (Co)			100.2		%		70-130	28-FEB-14
Copper (Cu)			102.3		%		70-130	28-FEB-14
Iron (Fe)			102.1		%		70-130	28-FEB-14
Lead (Pb)			99.9		%		70-130	28-FEB-14
Lithium (Li)			106.9		%		70-130	28-FEB-14
Magnesium (Mg)			100.0		%		70-130	28-FEB-14
Magnosiani (Mg)			100.0		70		10-130	20-FED-14

Reference VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1	Qualifier	Units % % % %	RPD	Limit 70-130 70-130 70-130	Analyzed 28-FEB-14 28-FEB-14
VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
VA-NRC-ST	100.1 100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
	100.8 102.5 102.2 105.5 100.1		% % %		70-130	28-FEB-14
	102.5 102.2 105.5 100.1		% %			
	102.2 105.5 100.1		%		70-130	
	105.5 100.1					28-FEB-14
	100.1				70-130	28-FEB-14
			%		70-130	28-FEB-14
	104.0		%		70-130	28-FEB-14
	104.0		%		70-130	28-FEB-14
	104.7		%		70-130	28-FEB-14
	104.1		%		70-130	28-FEB-14
	100.5		%		70-130	28-FEB-14
	99.8		%		70-130	28-FEB-14
	112.3		%		70-130	28-FEB-14
	104.5		%		70-130	28-FEB-14
	103.2		%		70-130	28-FEB-14
L1424625-1 15400	15700		mg/kg	1.9	40	28-FEB-14
0.67	0.79		mg/kg	17	30	28-FEB-14
49.6	40.4		mg/kg	21	30	28-FEB-14
229	238		mg/kg			28-FEB-14
0.51	0.51					28-FEB-14
<0.20	<0.20	RPD-NA				28-FEB-14
						28-FEB-14
						28-FEB-14
						28 FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14
						28-FEB-14 28-FEB-14
						28-FEB-14 28-FEB-14
						28-FEB-14
						28-FEB-14 28-FEB-14
	15400 0.67 49.6 229	 104.1 100.5 99.8 112.3 104.5 103.2 103.2 15400 15700 0.67 15700 0.67 0.79 49.6 40.4 229 238 0.51 0.51 2.20 2.38 0.51 0.51 0.51 2.020 31.1 32.00 31.1 34000 33200 31.1 32.5 10.1 9.81 47.5 56.4 20200 21700 8.56 11.5 19.1 19.9 2920 3110 294 327 2.76 3.14 58.3 61.0 	104.1 100.5 99.8 112.3 104.5 104.5 103.2 L1424625-1 15400 0.67 0.67 49.6 40.4 229 238 0.51 <0.20	104.1 % 100.5 % 99.8 % 112.3 % 104.5 % 104.5 % 103.2 % 15400 15700 mg/kg 0.67 0.79 mg/kg 49.6 40.4 mg/kg 229 238 mg/kg 0.51 0.51 mg/kg 0.51 0.51 mg/kg 0.108 0.113 mg/kg 34000 3200 mg/kg 31.1 32.5 mg/kg 10.1 9.81 mg/kg 47.5 56.4 mg/kg 10.1 9.91 mg/kg 20200 21700 mg/kg 19.1 19.9 mg/kg 2920 3110 mg/kg 294 327 mg/kg 294	104.1 % 100.5 % 99.8 % 112.3 % 104.5 % 104.5 % 104.5 % 103.2 % 15400 15700 mg/kg 1.9 0.67 0.79 mg/kg 17 49.6 40.4 mg/kg 21 229 238 mg/kg 0.8 <0.51	104.1 % 70-130 100.5 % 70-130 99.8 % 70-130 112.3 % 70-130 112.3 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 103.2 % 70-130 103.2 % 70-130 104.5 % 70-130 103.2 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.5 % 70-130 104.6 10.79 mg/kg 1.0 10.67 0.79 mg/kg 1.0 40 0.51 mg/kg 0.8 30 30 0.20 RPD-NA mg/kg 1.8 30 34000 33200 mg/k

		Workorder:	L142462	5 Re	eport Date: 1	8-MAR-14	P	age 7 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-V/	A Soil							
Batch R279848	Э							
WG1837121-3 DUP		L1424625-1						
Potassium (K)		740	790		mg/kg	6.7	40	28-FEB-14
Selenium (Se)		0.49	0.65		mg/kg	30	30	28-FEB-14
Silver (Ag)		<0.10	0.11	RPD-NA	mg/kg	N/A	40	28-FEB-14
Sodium (Na)		280	270		mg/kg	6.3	40	28-FEB-14
Strontium (Sr)		215	248		mg/kg	14	40	28-FEB-14
Thallium (TI)		0.148	0.176		mg/kg	17	30	28-FEB-14
Tin (Sn)		<2.0	<2.0	RPD-NA	mg/kg	N/A	40	28-FEB-14
Titanium (Ti)		731	674		mg/kg	8.2	40	28-FEB-14
Uranium (U)		0.610	0.706		mg/kg	15	30	28-FEB-14
Vanadium (V)		101	97.7		mg/kg	3.0	30	28-FEB-14
Zinc (Zn)		33.4	36.3		mg/kg	8.1	30	28-FEB-14
WG1837121-1 MB Aluminum (Al)			<50		mg/kg		50	28-FEB-14
Antimony (Sb)			<0.10		mg/kg		0.1	28-FEB-14
Arsenic (As)			<0.050		mg/kg		0.05	28-FEB-14
Barium (Ba)			<0.50		mg/kg		0.5	28-FEB-14
Beryllium (Be)			<0.20		mg/kg		0.2	28-FEB-14
Bismuth (Bi)			<0.20		mg/kg		0.2	28-FEB-14
Cadmium (Cd)			<0.050		mg/kg		0.05	28-FEB-14
Calcium (Ca)			<50		mg/kg		50	28-FEB-14
Chromium (Cr)			<0.50		mg/kg		0.5	28-FEB-14
Cobalt (Co)			<0.10		mg/kg		0.5	28-FEB-14
Copper (Cu)			<0.10		mg/kg			
			<0.30 <50		•••		0.5	28-FEB-14
Iron (Fe) Lead (Pb)			<0.50		mg/kg		50	28-FEB-14
. ,					mg/kg		0.5	28-FEB-14
Lithium (Li)			<5.0		mg/kg		5	28-FEB-14
Magnesium (Mg)			<20		mg/kg		20	28-FEB-14
Manganese (Mn)			<1.0		mg/kg		1	28-FEB-14
Molybdenum (Mo)			<0.50		mg/kg		0.5	28-FEB-14
Nickel (Ni)			<0.50		mg/kg		0.5	28-FEB-14
Phosphorus (P)			<50		mg/kg		50	28-FEB-14
Potassium (K)			<100		mg/kg		100	28-FEB-14
Selenium (Se)			<0.20		mg/kg		0.2	28-FEB-14
Silver (Ag)			<0.10		mg/kg		0.1	28-FEB-14

		Workorder	: L142462	5	Report Date: 18	3-MAR-14	P	age 8 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-VA	Soil							
Batch R2798489								
WG1837121-1 MB								
Sodium (Na)			<100		mg/kg		100	28-FEB-14
Strontium (Sr)			<0.50		mg/kg		0.5	28-FEB-14
Thallium (TI)			<0.050		mg/kg		0.05	28-FEB-14
Tin (Sn)			<2.0		mg/kg		2	28-FEB-14
Titanium (Ti)			<1.0		mg/kg		1	28-FEB-14
Uranium (U)			<0.050		mg/kg		0.05	28-FEB-14
Vanadium (V)			<0.20		mg/kg		0.2	28-FEB-14
Zinc (Zn)			<1.0		mg/kg		1	28-FEB-14
WG1837121-2 MB Aluminum (Al)			<50		mg/kg		50	
Antimony (Sb)			<0.10		mg/kg		0.1	28-FEB-14
Arsenic (As)			<0.050		mg/kg		0.05	28-FEB-14
Barium (Ba)			<0.50		mg/kg		0.05	28-FEB-14 28-FEB-14
Beryllium (Be)			<0.20		mg/kg		0.3	
Bismuth (Bi)			<0.20		mg/kg		0.2	28-FEB-14 28-FEB-14
Cadmium (Cd)			<0.20		mg/kg		0.2	
Calcium (Ca)			<50		mg/kg		50	28-FEB-14 28-FEB-14
Chromium (Cr)			<0.50		mg/kg		0.5	28-FEB-14 28-FEB-14
Cobalt (Co)			<0.10		mg/kg		0.3	
Copper (Cu)			<0.10		mg/kg		0.1	28-FEB-14 28-FEB-14
Iron (Fe)			<50		mg/kg		50	
Lead (Pb)			<0.50		mg/kg		0.5	28-FEB-14 28-FEB-14
Lithium (Li)			<0.30 <5.0		mg/kg			
Magnesium (Mg)			<3.0 <20		mg/kg		5	28-FEB-14
Magnesium (Mg) Manganese (Mn)			<20 <1.0		mg/kg		20	28-FEB-14
							1	28-FEB-14
Molybdenum (Mo)			<0.50		mg/kg		0.5	28-FEB-14
Nickel (Ni) Phosphorus (P)			<0.50 <50		mg/kg		0.5	28-FEB-14
					mg/kg		50	28-FEB-14
Potassium (K) Selenium (Se)			<100 <0.20		mg/kg		100	28-FEB-14
			<0.20 <0.10		mg/kg		0.2	28-FEB-14
Silver (Ag)					mg/kg		0.1	28-FEB-14
Sodium (Na)			<100		mg/kg		100	28-FEB-14
Strontium (Sr) Thallium (TI)			<0.50 <0.050		mg/kg mg/kg		0.5 0.05	28-FEB-14 28-FEB-14

		Workorder	L142462	25	Report Date: 18	3-MAR-14	Pa	ige 9 of 13
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-WW-200.2-CCMS-VA	Soil							
Batch R2798489								
WG1837121-2 MB								
Tin (Sn)			<2.0		mg/kg		2	28-FEB-14
Titanium (Ti)			<1.0		mg/kg		1	28-FEB-14
Uranium (U)			<0.050		mg/kg		0.05	28-FEB-14
Vanadium (V)			<0.20		mg/kg		0.2	28-FEB-14
Zinc (Zn)			<1.0		mg/kg		1	28-FEB-14
MOISTURE-VA	Soil							
Batch R2797649								
WG1836679-2 LCS								
Moisture			99.8		%		70-130	26-FEB-14
WG1836679-1 MB Moisture			<0.25		0/		0.05	
woisture			<0.25		%		0.25	26-FEB-14
PAH-TMB-H/A-MS-VA	Soil							
Batch R2797995								
WG1836681-4 IRM Acenaphthene		ALS PAH1 R	M 70.7		%		60-130	
Acenaphthylene			126.6		%		60-130 60-130	27-FEB-14 27-FEB-14
Anthracene			125.0		%		60-130	27-FEB-14 27-FEB-14
Benz(a)anthracene			116.8		%		60-130	27-FEB-14 27-FEB-14
Benzo(a)pyrene			99.1		%			
Benzo(b)fluoranthene			99.1 129.3		%		60-130 60-130	27-FEB-14 27-FEB-14
Benzo(g,h,i)perylene			94.5		%		60-130 60-130	27-FEB-14 27-FEB-14
Benzo(k)fluoranthene			94.5 107.4		%			
Chrysene			118.7		%		60-130	27-FEB-14 27-FEB-14
Dibenz(a,h)anthracene			109.5		%		60-130	
Fluoranthene			123.8		%		60-130	27-FEB-14
Fluorene							60-130	27-FEB-14
			77.7 100.0		%		60-130	27-FEB-14
Indeno(1,2,3-c,d)pyrene			97.2				60-130	27-FEB-14
2-Methylnaphthalene					%		60-130	27-FEB-14
Naphthalene Phenanthrene			99.0		%		50-130	27-FEB-14
			118.4		%		60-130	27-FEB-14
Pyrene			123.5		%		60-130	27-FEB-14
WG1836681-1 MB Acenaphthene			<0.0050		mg/kg		0.005	27-FEB-14
Acenaphthylene			<0.0050		mg/kg		0.005	27-FEB-14 27-FEB-14
Anthracene			<0.0030		mg/kg			
Anunacene			<0.0040		ilig/kg		0.004	27-FEB-14

		Workorder:	L142462	5	Report Date: 18	3-MAR-14	Pa	age 10 of 13
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R2797995								
WG1836681-1 MB								
Benz(a)anthracene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(a)pyrene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(b)fluoranthene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	27-FEB-14
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	27-FEB-14
Chrysene			<0.010		mg/kg		0.01	27-FEB-14
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	27-FEB-14
Fluoranthene			<0.010		mg/kg		0.01	27-FEB-14
Fluorene			<0.010		mg/kg		0.01	27-FEB-14
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	27-FEB-14
2-Methylnaphthalene			<0.010		mg/kg		0.01	27-FEB-14
Naphthalene			<0.010		mg/kg		0.01	27-FEB-14
Phenanthrene			<0.010		mg/kg		0.01	27-FEB-14
Pyrene			<0.010		mg/kg		0.01	27-FEB-14
Surrogate: Naphthalene	d8		74.8		%		50-130	27-FEB-14
Surrogate: Acenaphthene	e d10		76.7		%		60-130	27-FEB-14
Surrogate: Phenanthrene	e d10		77.6		%		60-130	27-FEB-14
Surrogate: Chrysene d12	2		88.0		%		60-130	27-FEB-14
PH-WW-1:2-DI-MAN-VA	Soil							
Batch R2797958								
WG1836549-13 DUP pH (1:2 soil:water)		L1424625-1 8.17	8.09	J	рН	0.08	0.3	27-FEB-14
PAH-SPLP-WT	Waste							
Batch R2798085								
WG1837346-1 CVS 1-Methylnaphthalene			99.2		%		50-150	28-FEB-14
2-Methylnaphthalene			102.2		%		50-150	28-FEB-14
Acenapthene			103.8		%		50-150	28-FEB-14
Acenaphthylene			104.9		%		50-150	28-FEB-14
Anthracene			107.8		%		50-150	28-FEB-14
Benzo(a)anthracene			105.1		%		50-150	28-FEB-14
Benzo(a)pyrene			104.6		%		50-150	28-FEB-14
Benzo(b)fluoranthene			105.2		%		50-150	28-FEB-14
Denzo(b)nuorantinene			105.2		70		50-150	20-FED-14

		Workorder	: L142462	5	Report Date: 18	3-MAR-14	Pa	ige 11 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
AH-SPLP-WT	Waste							
Batch R2798085								
WG1837346-1 CVS					<u>0</u> ′			
Benzo(k)fluoranthene			99.2		%		50-150	28-FEB-14
Chrysene			109.7		%		50-150	28-FEB-14
Dibenzo(ah)anthracene			106.2		%		50-150	28-FEB-14
Fluoranthene			103.9		%		50-150	28-FEB-14
Fluorene			104.8		%		50-150	28-FEB-14
Indeno(1,2,3-cd)pyrene			100.6		%		50-150	28-FEB-14
Naphthalene			107.9		%		50-150	28-FEB-14
Phenanthrene			102.6		%		50-150	28-FEB-14
Pyrene			112.4		%		50-150	28-FEB-14
WG1836846-2 LCS 1-Methylnaphthalene			78.5		%		E0 4E0	28-FEB-14
2-Methylnaphthalene			78.5		%		50-150	
Acenapthene			79.2 85.9		%		50-150	28-FEB-14
			86.9				50-150	28-FEB-14
Acenaphthylene			89.6		%		50-150	28-FEB-14
Anthracene					%		50-150	28-FEB-14
Benzo(a)anthracene			86.7		%		50-150	28-FEB-14
Benzo(a)pyrene			86.2		%		50-150	28-FEB-14
Benzo(b)fluoranthene			75.5		%		50-150	28-FEB-14
Benzo(g,h,i)perylene			80.1		%		50-150	28-FEB-14
Benzo(k)fluoranthene			81.1		%		50-150	28-FEB-14
Chrysene			91.1		%		50-150	28-FEB-14
Dibenzo(ah)anthracene			88.1		%		50-150	28-FEB-14
Fluoranthene			90.1		%		50-150	28-FEB-14
Fluorene			88.8		%		50-150	28-FEB-14
Indeno(1,2,3-cd)pyrene			84.8		%		50-150	28-FEB-14
Naphthalene			84.0		%		50-150	28-FEB-14
Phenanthrene			88.7		%		50-150	28-FEB-14
Pyrene			97.6		%		50-150	28-FEB-14
WG1836846-1 MB 1-Methylnaphthalene			<0.020		ug/L		0.02	28-FEB-14
2-Methylnaphthalene			<0.020		ug/L		0.02	28-FEB-14
Acenapthene			<0.020		ug/L		0.02	28-FEB-14
Acenaphthylene			<0.020		ug/L		0.02	28-FEB-14
Anthracene			<0.020		ug/L		0.02	28 FEB-14
· · · · · •							0.02	

		Workorder	Workorder: L1424625			8-MAR-14	Page 12 of 13		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-SPLP-WT	Waste								
Batch R2798085 WG1836846-1 MB									
Benzo(a)pyrene			<0.010		ug/L		0.01	28-FEB-14	
Benzo(b)fluoranthene			<0.020		ug/L		0.02	28-FEB-14	
Benzo(g,h,i)perylene			<0.020		ug/L		0.02	28-FEB-14	
Benzo(k)fluoranthene			<0.020		ug/L		0.02	28-FEB-14	
Chrysene			<0.020		ug/L		0.02	28-FEB-14	
Dibenzo(ah)anthracene			<0.020		ug/L		0.02	28-FEB-14	
Fluoranthene			<0.020		ug/L		0.02	28-FEB-14	
Fluorene			<0.020		ug/L		0.02	28-FEB-14	
Indeno(1,2,3-cd)pyrene			<0.020		ug/L		0.02	28-FEB-14	
Naphthalene			<0.020		ug/L		0.02	28-FEB-14	
Phenanthrene			<0.020		ug/L		0.02	28-FEB-14	
Pyrene			<0.020		ug/L		0.02	28-FEB-14	
Surrogate: 2-Fluorobiph	enyl		86.9		%		50-150	28-FEB-14	
Surrogate: d14-Terphen	yl		95.4		%		50-150	28-FEB-14	

Workorder: L1424625

Report Date: 18-MAR-14

Legend:

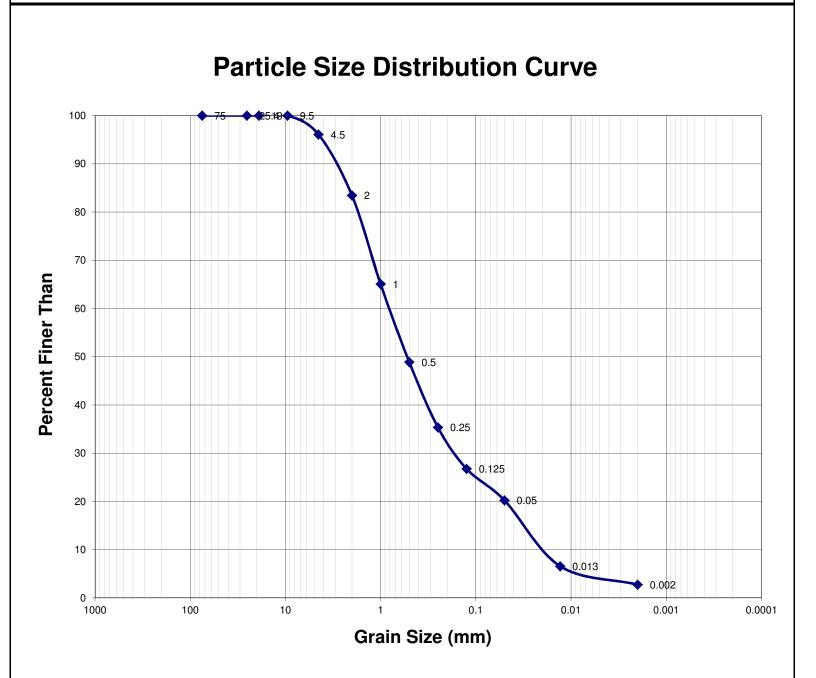
Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

_	Qualifier	Description
	J	Duplicate results and limits are expressed in terms of absolute difference.
	MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
	RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

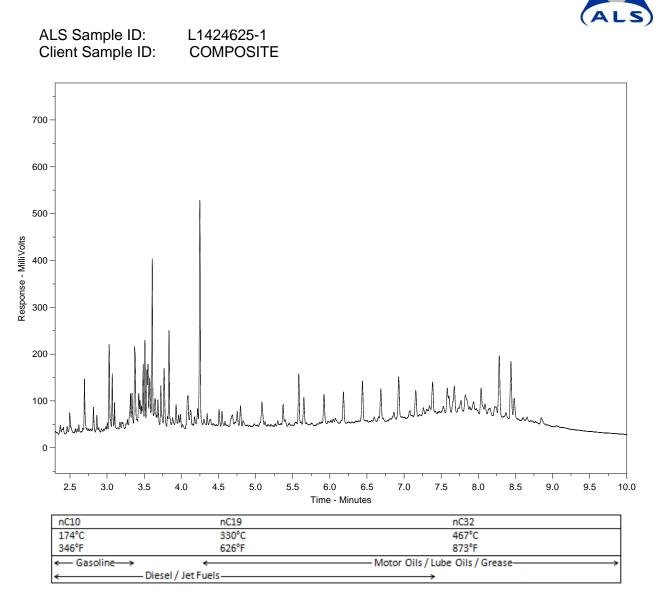

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Laboratory Group

819-58th Street, Saskatoon, SK S7K 6X5


Summary of Results

Unified Soil Classification System (USCS)												
Size Class	Size Range	Wt. (%)										
Cobbles	> 3"	0										
Gravel	4.75mm - 3"	4										
Coarse Sand	2.0mm - 4.75mm	13										
Medium Sand	0.425mm - 2.0mm	35										
Fine Sand	0.075mm - 0.425mm	26										
Fines	< 0.075mm	22										

Canadian Soil Survey Committee (CSSC)												
Size Class	Size Range	Wt. (%)										
Cobbles	> 3"	0										
Gravel	2mm - 3"	17										
Sand	0.05mm - 2mm	63										
Silt	0.002mm - 0.05mm	17										
Clay	< 0.002mm	3										
Texture	Loamy sand											

Method Reference: Can. Soc. Soil Sci. (1993) Method 47.2

Hydrocarbon Distribution Report

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

APPENDIX E

Appendix E Concrete Investigation of Lower Dam

Annex A Record of Coreholes

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446452.09 E: 430000.53

RECORD OF BOREHOLE: CH14-02

DRILLING DATE: 02/11/2014 - 02/12/2014

SHEET 1 OF 3 DATUM: NAD 83

DESCRIPTION Top of Concrete CONCRETE - pour joint - 0.61 m of cinder and slag fill above concrete core excavated by hand. - pour joint - pour joint	STRATA PLOT	H NN		BLOWS/0.3m	RUN No.		COV			GRAVEL	SAND	FINES		0-6	10 ⁻⁵ 1	10 ⁻⁴	10 ⁻³	ADDITIONAL LAB. TESTING	OR THERMISTOR INSTALLATION
CONCRETE - pour joint - 0.61 m of cinder and slag fill above concrete core excavated by hand. - pour joint - pour joint - pour joint	72.		_			Ĩ	Ţ	Ť	ï 									1	
CONCRETE - pour joint - 0.61 m of cinder and slag fill above concrete core excavated by hand. - pour joint - pour joint - pour joint		00 C1				[1.7	_											
 - 0.61 m of cinder and slag fill above concrete core excavated by hand. - pour joint - pour joint - pour joint 						1													
- pour joint - pour joint - pour joint																			
- pour joint - pour joint				1															
- pour joint	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				1														
- pour joint																			
	P 5																		
						$\left \right $	_	+-	\square										
- pour joint	A 4 4																		
- pour joint	A 4																		
	A 5 4				2														
pour joint	P 54																		
- pour joint	P 5 4																		
- pour joint	P 5 4							_	Н										
	P 5 4																		
- pour joint	A 4																		
	P 5 4				3														
	A 4																		
	A 4																		
	2 2 4								Ц										
	44																		
- pour joint	4 7 4 4																		
	A 4																		
	44				4														
	2 2 4 4																		
	_ 4 _4																		
								-	\square										
	4 2 4																		
	4 4																		
	2 2 4				5														
	A 4																		
	A 4																		
- pour joint						⊢		+	H										
	A 4	C2	-																
- pour joint	р Ц 4 4		1																
	A 4				6														
	P 5 4																		
nour ioint	P 5																		
- pour joint	1.9.21				-	H	+	+	H										
- pour joint	4 2 4				7														
- pour joint - pour joint	- <u>e</u>	-		+-	┣	+	+-	+-	+						+	-	+	-	
- pour joint						Ļĺ						S				SVSTE	M. GAC	<u> </u> s	
				-		1								ASSILI	CATION	OIOIL	IVI. GAC	-	
		- pour joint 7 	- pour joint 7	- pour joint 7 	- pour joint 7 	- pour joint 7 	- pour joint 7 - CONTINUED NEXT PAGE	- pour joint 7	- pour joint 7 - CONTINUED NEXT PAGE	- pour joint 7 - CONTINUED NEXT PAGE	- pour joint 7 CONTINUED NEXT PAGE	- pour joint 7 CONTINUED NEXT PAGE							

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446452.09 E: 430000.53

RECORD OF BOREHOLE: CH14-02

DRILLING DATE: 02/11/2014 - 02/12/2014

SHEET 2 OF 3 DATUM: NAD 83

	Ц	RD	2	SOIL PROFILE			S	AMPL	ES		С	ORE			GRA	DATI	ON %	HYDR	AULIC C k, cm/s	ONDUCT	TIVITY,	Т	. (7)	PIEZOMETER, STANDPIPE
	METRES	BORING RECORD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE (mm) TYPE	BLOWS/0.3m	RUN No.			VER'		GRAVEL	SAND	FINES	1			0-4 1	0 ⁻³	ADDITIONAL LAB. TESTING	OR THERMISTOR INSTALLATION
	10		_	CONCRETE (continued)							80	09	40	50										
	11			- pour joint - pour joint	A A A A A A A A A A A A A A A A A A A		C6	-		7														
	12			- pour joint	A A A A A A A A A A A A A A A A A A A																			
	13			 break at large size aggregate location. pour joint broken pieces encountered from 13.1 m to 13.2 m depth. 50-100 mm diameter pieces of concrete were encountered from 13.6 m to 15.3 m. pour joint 						8														
C.GLB matrobertson 4/25/14	15	Track Mounted Diamond Drill Rig	Diamond Drilling	- pour joint - pour joint	· · 4	1	C3 C8	-																
File:GNT_GAL_MTIONALIM Output Form:BC_BOREHOLE (ENVIRO SOLL CORNG AUTO) TempateLICCALHOST: GNN_GAL_TEMPLATE_DEV Library: GAL LI	16	Trac		 break at large size aggregate location. rebar encountered at 15.7 m, 16.2 m, 16.8 m, 17.1 m, and 17.4 m depth. 	,					9														
SOIL CORING AUTO) Template:LOCALHOST: GI	18			fresh, massive; grey to dark grey; pebbles and granules, medium strong (R3), CONGLOMERATE, clast supported, clasts typically sub-rounded. - pour joint		<u>55.15</u> 17.75				10														
ALIM Output Form: BC_BOREHOLE (ENVIRO	19 20	[11														
NATION				CONTINUED NEXT PAGE													s	SOIL CL	ASSIFIC	ATION	SYSTE	I: GACS	S	
File:GINT_GAI	DE 1 :			CALE					(B	A	G <u>.s</u> s	ol <u>30</u> 0	de cia	r ite	<u>s</u>						GED: TN KED: AC		

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446452.09 E: 430000.53

RECORD OF BOREHOLE: CH14-02

DRILLING DATE: 02/11/2014 - 02/12/2014

SHEET 3 OF 3 DATUM: NAD 83

	ш	ß	SOIL PROFILE			S	AMPLI	ES		С	ORE			GRA	DATIO	ON %	HYDRA	AULIC CO k, cm/s	ONDUC.	TIVITY,	T	.0	PIEZOMETER, STANDPIPE
	DEPTH SCALE METRES	BORING RECORD		LOT		ц	TYPE	.3m	ġ								10			0 ⁻⁴ 1	_{0⁻³} ⊥	ADDITIONAL LAB. TESTING	OR THERMISTOR
	METI	SING F	DESCRIPTION		ELEV. DEPTH	NUMBER	TYPE (mm) TYPE	BLOWS/0.3m	RUN No.	RE	ECO	VER	Y %	GRAVEL	SAND	FINES						AB. TE	INSTALLATION
	ä	BOF		STR	(m)	ž		BLC	2	G	09	40	20	U									
-	- 20				52.78				11			_	_										
E			End of Borehole.		20.12					F													
F			Note - Concrete pieces may																				-
			be the result of fracture during coring and retrieval process.																				-
	- 21																						-
-																							-
E																							-
F																							-
E	- 22																						-
E																							-
ŀ																							-
																							-
	- 23																						-
F																							-
																							-
-																							-
Ē	- 24																						-
F																							-
4/25/14																							-
ertson 4	- 25																						-
matrob																							
LIBRARY.GLB																							-
																							-
Library:_G	- 26																						-
DEV	•																						-
PLATE																							-
GAL_TEN																							-
GINTG	- 27																						
LHOST																							-
Template:LOCALHOST:																							-
Templa																							-
AUTO)	- 28																						-
																							-
(ENVIRO SOIL																							-
BOREHOLE	- 29																						
																							-
Output Form:BC																							-
	- 30																						
TIONALIM	50							L															
GAL_NA		рти с	SCALE						B		-	_	_			S	SOIL CLA	SSIFIC	ATION				
e:GINT_		50						C			G	ol	de	r	6						GED: TN KED: AC		
1										Π	.00		LT¢		3					-			

RECORD OF BOREHOLE: CH14-03

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446440.67 E: 430007.37

DRILLING DATE: 02/13/2014 - 02/14/2014

SHEET 1 OF 2 DATUM: NAD 83

ш		RD RD	SOIL PROFILE			S/	AMPL	ES		CC	ORE		GRA	DATIO	ON %	HYDR	AULIC C k, cm/s	ONDUCT	FIVITY,	Т	<u>ں</u>	PIEZOMETER, STANDPIPE
DEPTH SCAL	METRES	BORING RECORD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE (mm) TYPE	BLOWS/0.3m	RUN No.			ERY %	GRAVEL	SAND	FINES	1	0 ⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	OR THERMISTOR INSTALLATION
			Top of Concrete	0,	72.90					- [®]	9	4 0										
-	0		CONCRETE	A 4 4 A																		
			- 0.7 m of cinder and slag fill above concrete core excavated by hand.	4 4 4 4 4 4 4 4 4																		
-	1		- rebar encountered at 0.8 m.	14 4 4 4 4 4 4 4 4 4 4 4 4 4					1													
			 core was dropped and broken between 0 m and 1.8 m depth. joints and rebar encountered within the core, relative locations unknown. 	4 4 4 4																		
	2		- 100-200 mm diameter pieces of concrete were encountered from 1.8 m to 2.8 m depth. - pour joint	**********		C9 C4	-															
	3		- pour joint	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		C7	-		2													
			- pour joint	A 4 4 4 4 4									-									
	4	Track Mounted Diamong Drill	- 100-250 mm diameter pieces of concrete were encountered from 4.0 m to 5.4 m depth. - pour joint	*****************					3													
	5	Diamo	문 - pour joint	4 4 4 4 4 4							_		-									
	э	Ao unted		2 2 4 2 4																		
-		rack	 □ pour joint 	а <u>а</u> 2 а 4 а																		
	6		 - 50-100 mm diameter pieces of concrete encountered from 5.4 m to 8.8 m. 	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7					4													
	7		- pour joint	4 4 4 4 4 4 4 4 4 4		C5	-		5													
			pour joint	4 4 4 4 A			1															
-			- pour joint	4 4 4 4																		
				9 4 4 4 7 4									4									
-	8		- pour joint	4 4 A																		
			- pour joint	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4																		
				7 4 4 7 4 4					6													
-	9			A 4 4 A	63.65																	
			fresh, massive; grey to dark grey; pebbles and granules, medium strong		63.65																	
			(R3), CONGLOMERATE, clast supported; clasts typically						_	$ \top$												
			sub-rounded.						7													
	10		CONTINUED NEXT PAGE						 	11	1-	††-	†-	Γ-				†		†		
				1		I	I					1	1	I	S	OIL CL	ASSIFIC	ATION	SYSTEM	I M: GACS	3	<u> </u>
0			TH SCALE								Go	olde ocia	r							GED: TN		
2	1:	50	U						V	Ά	SSC	DCÌa	ate	S					CHEC	KED: AC	,	

CLIENT: City of Nanaimo PROJECT: Colliery Dams LOCATION: Nanaimo, B.C. N: 5446440.67 E: 430007.37

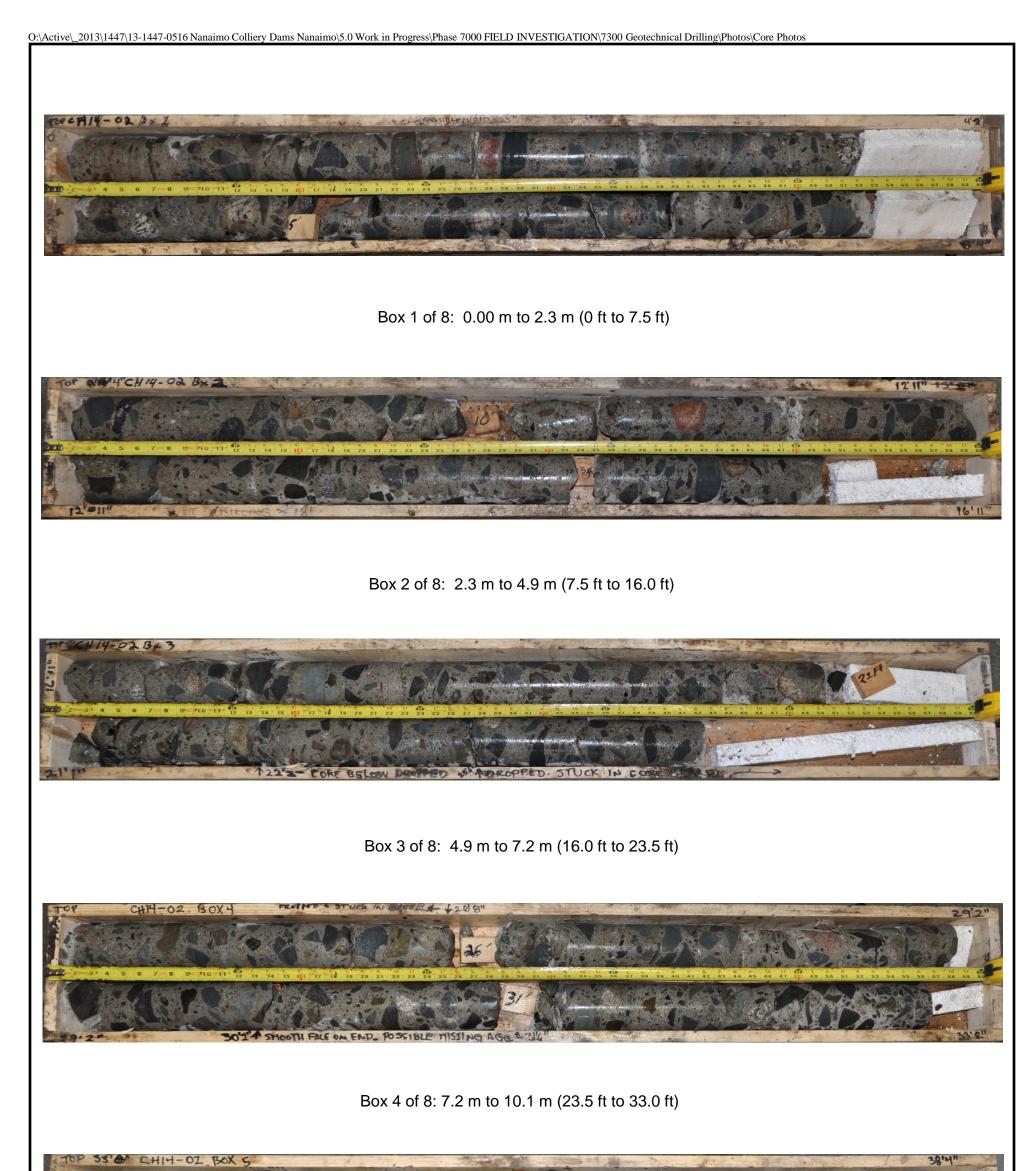
RECORD OF BOREHOLE: CH14-03

DRILLING DATE: 02/13/2014 - 02/14/2014

SHEET 2 OF 2 DATUM: NAD 83

	ш		2	SOIL PROFILE			S	SAMPLES C			ORE			GRA	DATIO	DN %	HYDR	AULIC Co k, cm/s	ONDUCT	FIVITY,	т	0	PIEZOMETER, STANDPIPE	
	DEPTH SCALE METRES	BOPING PECORD			LOT		щ	TYPE	.3m	i i					_			1			0-4 1	0 ⁻³ ⊥	ADDITIONAL LAB. TESTING	OR THERMISTOR
	EPTH METI			DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE (mm) TYPE	BLOWS/0.3m	RUN No.	RE	CO	VER	Y %	GRAVEL	SAND	FINES						ADDITI AB. TE	INSTALLATION
		Ğ	3		STR	(m)	z		BLO	Ľ.	e e	3 8	40	20	0				1				L /	
	- 10	\vdash		fresh, massive; grey to dark grey;									+	-										
-				(R3), CONGLOMERATE, clast supported; clasts typically sub-rounded. <i>(continued)</i>																				
F				supported; clasts typically sub-rounded. (continued)	000					7														
E		Track Mounted Diamong Drill			000																			
-	- 11	Diamor	Diamond Drilling		000																			-
		ounted	amond																					
E		ack Mo	ä		0000					8														
E	- 12	F			0000																			
-	12				0000																			
F					0000	60.40 12.50																		
F				End of Borehole.		2.00																		
F	- 13			Note - Concrete pieces may be the result of fracture during coring and retrieval process.																				-
E				v																				
-																								
F																								
E	- 14																							
4/25/14																								
bertson	- 15																							-
-B matro																								
RARY.GI																								
GAL UB																								
Library:	- 16																							-
TE_DEV																								
TEMPLA																								
T_GAL_	- 17																							-
DST: GIN	.,																							
OCALHC																								
emplate:L																								
110) Te	- 18																							-
DRING A																								
SOIL CC																								
ENVIRO																								
EHOLE (- 19																							
BC_BOR																								
out Form:																								
LIM Out	- 20																							-
File.GINT_GAL_INATIONALM_OutputFram:BC_BOREHOLE (ENVIRO SOIL CORNG AUTO) TemplateLOCALHOST: GINT_GAL_IEMPLATE_DEV LIbrary: GAL LIBRARY GLB matrixentson 4/26/14											Ĺ										OVOTE	M: GACS	Ĺ	
T_GAL_1	DE	PTI	H S	CALE					1	7	Ś	C	പ	da	-		5		-001510	ATION		M: GACE GED: TN		
File:GIN	1 :	50)						V	Ď	A	SS	010 600		tes	5						KED: AC		

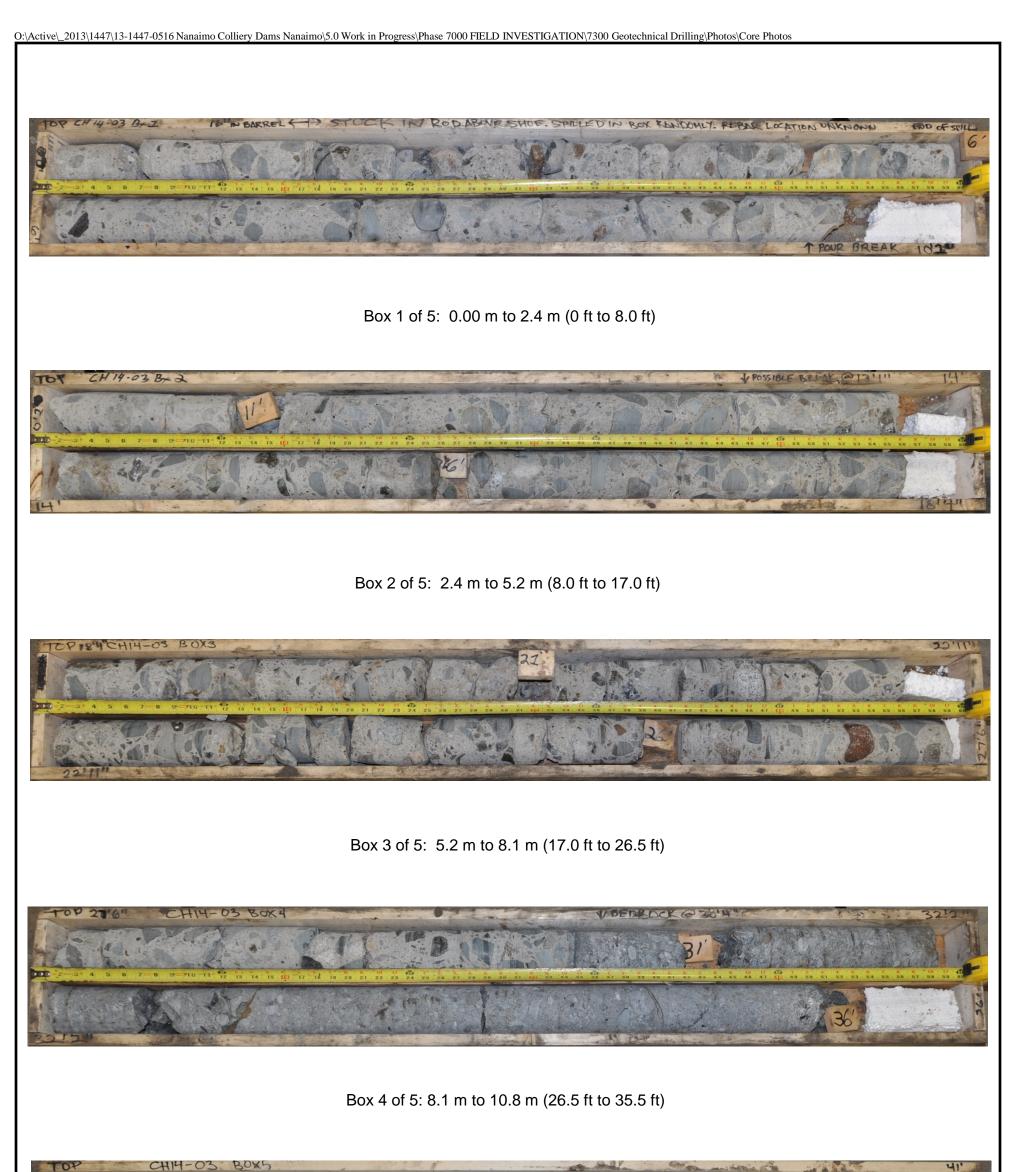
Annex B Diamond Drilling Core Photos


Box 5 of 8: 10.1 m to 12.9 m (33.0 ft to 42.5 ft)

PROJECT	RY DAM	OF NAN S PARK IAIMO,	(- LOWEF	RDAM	
DIAMOND DRILL BOXES 1 TO 5 O	COR		ютоб	-	
- 70	PROJEC	T No. 13-	1447-0516	Phase / Task No.	7000/7300
	DESIGN	TM	18MAR14	SCALE NTS	REV.
Golder	CADD	ТМ	24MAR14		
Associates	CHECK			FIGUR	F C-1
	REVIEW				- • ·

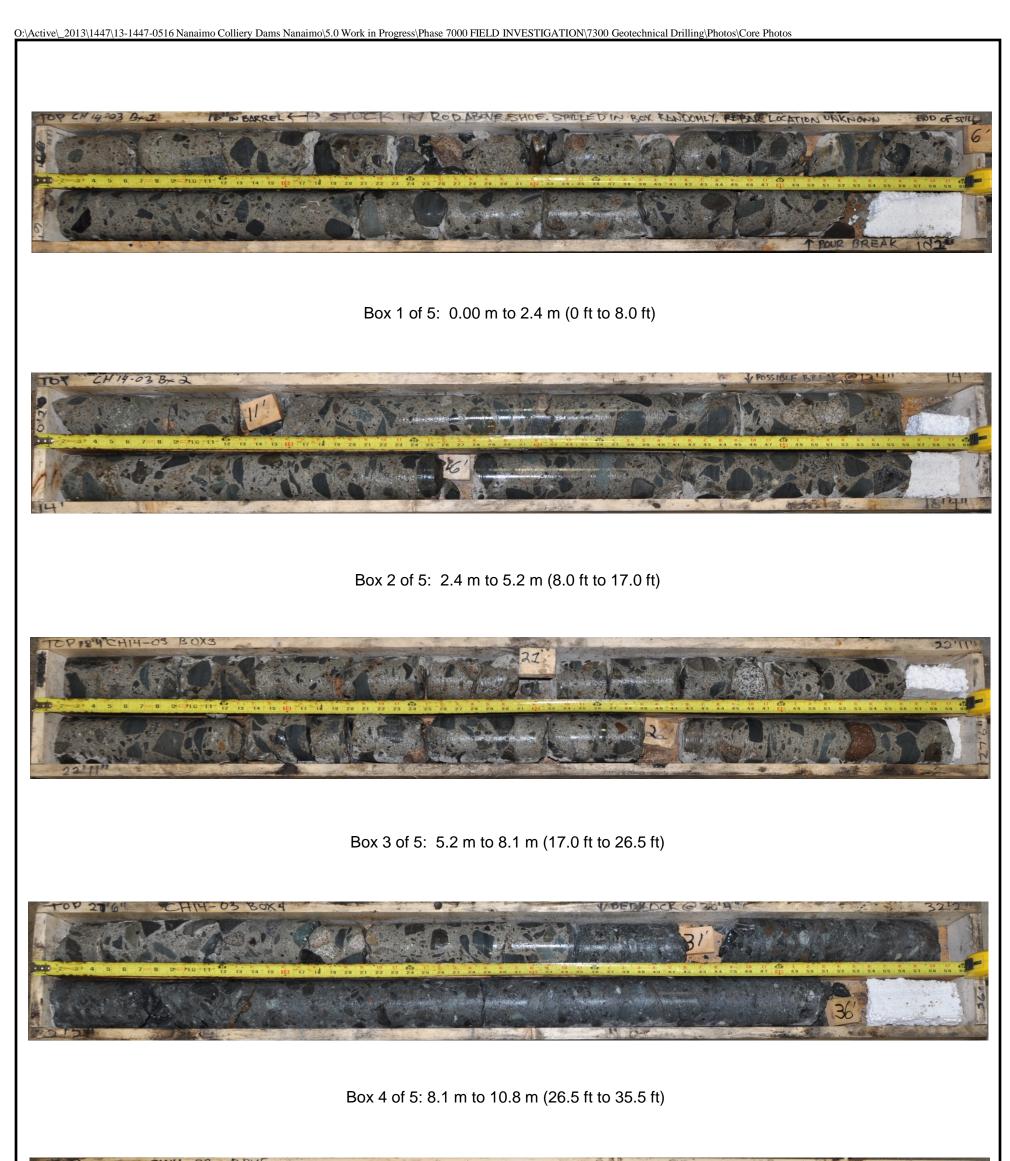
Box 8 of 8: 18.1 m to 20.1 m (59.5 ft to 66.0 ft)

PROJECT	CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.												
DIAMOND DRILL BOXES 6 TO 8 OF 8	COR		IOTOG										
-70-1	PROJEC	T No. 13-	1447-0516	Phase / Task No. 7000/7300									
	DESIGN	TM	18MAR14	SCALE NTS REV.									
Golder	CADD	ТМ	24MAR14										
Golder	CHECK			FIGURE C-2									
	REVIEW												


Box 5 of 8: 10.1 m to 12.9 m (33.0 ft to 42.5 ft)

PROJECT	Y DAM	OF NAN S PARK IAIMO,	- LOWEF	R DAM		
DIAMOND DRILL BOXES 1 TO 5 OI	COR		отос		-	/ET
	PROJEC	T No. 13-	1447-0516	Phase / Task	No. 7000/	7300
	DESIGN	TM	18MAR14	SCALE N	ГS	REV.
Golder	CADD	ТМ	24MAR14			
Associates	CHECK			FIGU	RE C-	3
	REVIEW					•

Box 8 of 8: 18.1 m to 20.1 m (59.5 ft to 66.0 ft)


PROJECT	CITY OF NANAIMO COLLIERY DAMS PARK – LOWER DAM NANAIMO, B.C.												
DIAMOND DRILL BOXES 6 TO 8 OF 8	COR		IOTOG										
-70	PROJEC	T No. 13-	1447-0516	Phase / Task No. 7000/7300									
	DESIGN	TM	18MAR14	SCALE NTS REV.									
Golder	CADD	ТМ	24MAR14										
Golder	CHECK			FIGURE C-4									
	REVIEW												

Box 5 of 5: 10.8 m to 12.3 m (35.5 ft to 40.5 ft)

PROJECT	RY DAM	OF NAN S PARK IAIMO,	C – LOWEF	R DAM							
DIAMOND DRILL BOXES 1 TO 5 O	COR		IOTOG		1						
	PROJEC	T No. 13-	1447-0516	Phase / Task No. 7000/7300)						
	DESIGN TM 18MAR14 SCALE NTS REV.										
Golder	Golder Associates CADD TM 24MAR14 CHECK FIGURE C-5										
Associates	CHECK			FIGURE C-5							
	REVIEW										

Box 5 of 5: 10.8 m to 12.3 m (35.5 ft to 40.5 ft)

PROJECT	Y DAM	OF NAN S PARK IAIMO,	- LOWEF	R DAM							
DIAMOND DRILL BOXES 1 TO 5 OI	COR		IOTOG	-							
	PROJEC	T No. 13-	1447-0516	Phase / Task No. 7000/7300							
	DESIGN	TM	18MAR14	SCALE NTS REV.							
Golder	Golder Associates CADD TM 24MAR14 CHECK FIGURE C-6										
Associates	CHECK			FIGURE C-6							
	REVIEW										

Annex C Laboratory Testing Results

OBTAINING AND TESTING DRILLED CORES FOR COMPRESSIVE STRENGTH TESTING CSA A23.2-14C

March 31, 2014

Project Number: 13-1447-0516

City of Nanaimo 445 Wallace Street Nanaimo, BC V9R 5J6

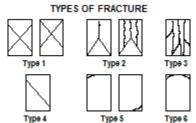
PROJECT: Colliery Dam, Nanaimo, BC

Concrete Supplier: Unknown Date Cored: February 11 to 14, 2014 Date Tested: March 28, 2014 Mix #: Cored By: Tested By: Unknown Client Golder-GP

Core		Core Location Test Age Diameter, Core Parameters Maximum Diameter, D (mm) Core Corre Length L, L/D ction (mm) factor		Core Parame	eters		Maximum	Compressive Strength (MPa)		Failure	Unit
No.	Core Location		Load (kN)	Tested	Corrected	Туре	Mass (kg/m³)				
C1	CH14-02 (0.00' - 0.42')	n/a	81.13	117.49	1.45	0.95	306.00	59.2	56.3	3	2316
C2	CH14-02 (27.00'-27.42')	n/a	81.89	167.89	2.05	1.00	172.30	32.7	32.7	3	2478
C3	CH14-02 (49.67'-50.17')	n/a	82.06	167.89	2.05	1.00	161.40	30.5	30.5	3	2439
C4	CH14-03 (7.08'-7.42')	n/a	82.34	167.10	2.03	1.00	168.40	31.6	31.6	3	2423
C5	CH14-03 (23.25'- 23.67')	n/a	81.03	167.57	2.07	1.00	127.70	24.8	24.8	3	2419

Comments:

Concrete cores were tested in saturated condition Core diameter less than three times the nominal aggregate size.


Reported By: L. Hu, M.Sc.E.

Reviewed by:

Oon-Soo Ooi, M.Sc.E., P.Eng.

<u>Notice:</u> The test data given herein pertain to the sample provided. This report constitutes a testing service only. Interpretation of the data given here may be provided upon request.

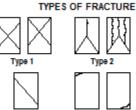
OBTAINING AND TESTING DRILLED CORES FOR DIRECT TENSILE STRENGTH OF BOND TESTING CSA A23.2-6B

April 11, 2014

Project Number: 13-1447-0516

City of Nanaimo 445 Wallace Street Nanaimo, BC V9R 5J6

PROJECT: Colliery Dam, Nanaimo, BC


Concrete Supplier: Unknown Date Cored: February 11 to 14, 2014 Date Tested: March 28, 2014

Mix #: Cored By: Tested By:

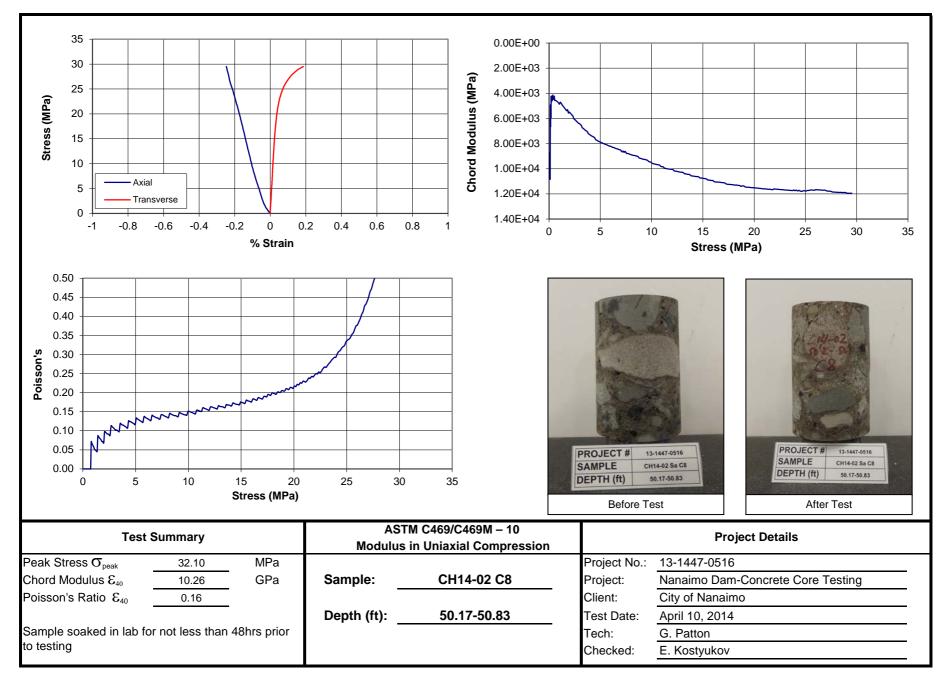
Unknown Client Golder-GP

Core No.		Core Location	Test Age	Cor	re Paramete	rs	Maximum Load (kN)	Tensile Strength (MPa)	Failure Notes
NO.	Test Date			Diameter (mm)	Length (mm)	Area (mm²)			
C6	April 11, 2014	CH14-02 (36.67' – 37.5')	n/a	82.0	57.5	5281	4.89	0.95	Failure partially at the pour joint and partially in the overlying concrete
C7	April 07, 2014	CH14-03 (9.67' – 10.17')					-	-	Invalid test. Sample failed premature due to poor bond between two pours

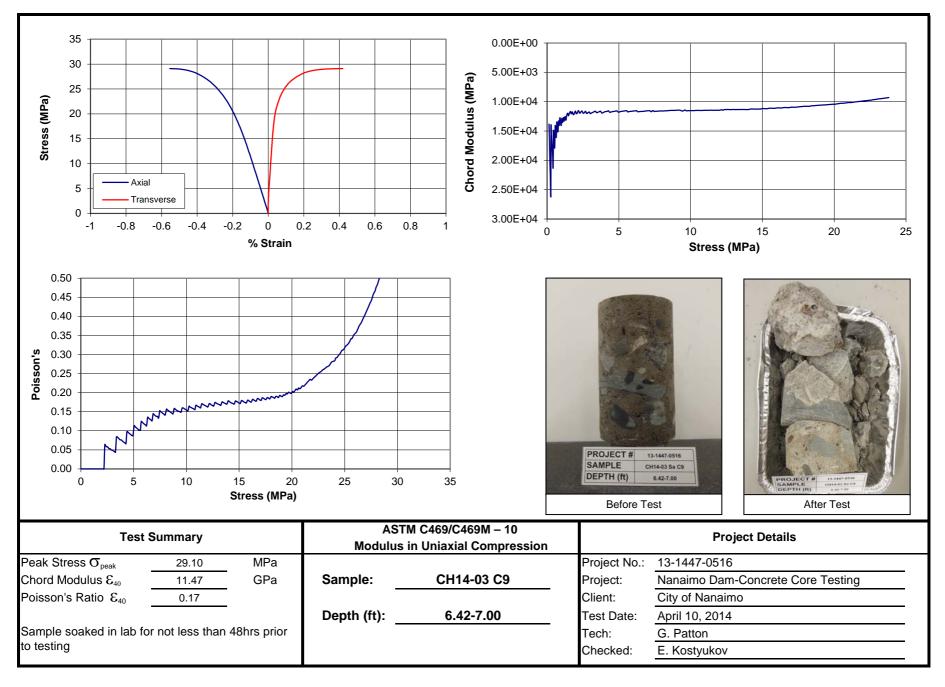
Comments: Concrete cores were tested in saturated condition Core diameter less than three times the nominal aggregate size.

Oon-Soo Ooi, M.Sc.E., P.Eng.

Reported By: L. Hu, M.Sc.E.


Reviewed by:

Notice: The test data given herein pertain to the sample provided. This report constitutes a testing service only. Interpretation of the data given here may be provided upon request.



Golder Associates Ltd. - Burnaby Lab #300 - 3811 North Fraser Way Burnaby, B.C. Canada V5J 5J2

Golder Associates Ltd. - Burnaby Lab #300 - 3811 North Fraser Way Burnaby, B.C. Canada V5J 5J2

Unconfined Compressive Strength of Intact Rock Core Specimens									Reference ASTM D7012-10 Method C							
ect No.:			13-1447-0516 Nanaimo Dam-Concrete Core Testing													
			-													
		-							. ,		S)					
			nase C	геек												
ID		98							(4) Shea	-			(deg) measured	d from co	re axis	
										-						
	-								-			-	Rock Type			
#	#	(ft)	(mm)	(mm)	(cm ²)	(cm ³)	(g)	(Kg/m ³)	(%)	(Kg/m ³)	(kN)	(MPa)		Туре	(deg)	
CH14-03	N/A	31.00-32.50	81.88	160.88	52.66	847.11	2199.60	2597	1.39	2561	196.00	37.2	Conglomerate	7	N/A	
	0 De#				Amril 4 . 00	014		<u> </u>		<u> </u>	<u> </u>			4	<u> </u>	
7					-									4		
	ect: t: D Borehole # CH14-03	Prect: t: tion: D Borehole Sample # # CH14-03 N/A CH14-03 CH14 CH14-03 CH14	ect: Nanaimo D t: City of Nar tion: Nanaimo O D 98 Borehole Sample Depth # # (ft)	Anaimo Dam-Corrent: tion: Nanaimo Chase C D 98 Borehole Sample Depth Dia # # (ft) (mm) CH14-03 N/A 31.00-32.50 81.88 Image: Constraint of the stress of the strest	Anaimo Dam-Concrete Corretto City of Nanaimo tion: Nanaimo Chase Creek D 98 Borehole Sample Depth Dia Ht # # (ft) (mm) (mm) CH14-03 N/A 31.00-32.50 81.88 160.88 Image: Constraint of the strengt of the streng of the strengt of the strengt of the streng	Nanaimo Dam-Concrete Core Testing City of Nanaimo Nanaimo Chase Creek D 98 Borehole Sample Depth Dia Ht A # # (ft) (mm) (mm) (cm²) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 Image: Sample Depth Dia Ht A # # (ft) (mm) (cm²) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 Image: Sample Depth Dia Ht A # # (ft) (mm) (cm²) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Imag	Nanaimo Dam-Concrete Core Testing City of Nanaimo Nanaimo Chase Creek D 98 Borehole Sample Depth Dia Ht A V # # (tt) (mm) (mm) (cm ²) (cm ³) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 Image: CH14-03 Image: CH14-03 Image: CH14-03 Image: CH14-03 Image: CH14-03 Image: CH14-03 Image: CH14-03 Image: CH14-03 Image: CH1	Nanaimo Dam-Concrete Core Testing City of Nanaimo Nanaimo Chase Creek D 98 Borehole Sample Depth Dia Ht A V Mass # # (ft) (mm) (mm) (cm ²) (cm ³) (g) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 H # (ft) (mm) (mm) (cm ²) (cm ³) (g) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 L L L L L L L L	Nanaimo Dam-Concrete Core Testing: tion: Nanaimo Chase Creek D 98 Generice Sample Depth Dia Ht A V Mass Density # # (ft) (mm) (mm) (cm²) (cm³) (g) (Kg/m³) CH14-03 NA 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 2597 H # (ft) (mm) (mm) (cm²) (cm³) (g) (Kg/m³) CH14-03 NA 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 2597 I <	Nanaimo Dam-Concrete Core Testing City of Nanaimo (1) Diage (2) Vertion: tion: Nanaimo Chase Creek (3) Vertion D 98 (4) Sheat Borehole Sample Depth Dia Mt A Vertion Borehole Sample Depth Dia Ht A V Mass Density W # # (ft) (mm) (mm) (cm²) (cm³) (g) (Kg/m²) (%) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 2597 1.39 CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 2597 1.39 CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 2597 1.39 CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 219 1.00 1.00 1.00	Nanaimo Dam-Concrete Core Testing City of Nanaimo (1) Diagonal shear p (2) Vertical fracture((3) Vertical splitting manimo Chase Creek (4) Shear Jong Total D 98 (4) Shear Jong Total Total Colspan="6">Total Sampe OP Manaimo Chase Creek (4) Shear Jong Total D 98 (4) Shear Jong Total Total Colspan="6">Total Colspan="6">Manaimo Chase Creek Wet Meta Jong Total Borehole Sampe Depth Dia Mt Meta Meta Borehole Sample Depth Dia Ht A V Mass Density W Density # # (ft) (mm) (mm) (cm ²) (cm ³) (g) (Kg/m) (%) (Kg/m) CH14-03 N/A 31.00-32.50 81.88 160.88 52.66 847.11 2199.60 2597 1.39 2561 CH14-03 N/A 31.00-32.50 81.88 160.88 52.66	In anaimo Dam-Concrete Core Testing tion: Nanaimo Dam-Concrete Core Testing City of Nanaimo (1) Diagonal shear plane(s) (2) Vertical fracture(s) (3) Vertical splitting D 98 98 (4) Shear along foliation / disco Name Maximum Borehole Sample Depth Dia Ht A V Mass Density W Dong Maximum Borehole Sample Depth Dia Ht A V Mass Density W Dong (cm ²) (cm ³) (g) (Kg/m ³) (%) Maximum Borehole Sample Depth Dia Ht A V Mass Density W Dong (kg/m ³) (kg/m ³)	nanaimo Dam-Concrete Core Testing tion: Nanaimo Chase Creek (1) Diagonal shear plane(s) (5) Ci tity of Nanaimo (2) Vertical fracture(s) (6) Sp Total Splitting (7) O O Vertical fracture(s) (6) Sp Total Splitting (7) O O Vertical fracture(s) (5) Ci Total Splitting (7) O O Vertical fracture(s) (5) Ci (7) O O Vertical fracture(s) Vertical fracture(s) (5) Ci Portical fracture(s) Vertical fracture(s) Vertical fracture(s) (5) Ci Portical fracture(s) Vertical fracture(s) Vertical fracture(s) Vertical fracture(s) Vertical fracture(s) Vertical fracture(s) (5) Ci Portical fracture(s) Vertical fracture(s) Vertical fracture(s) Vertical fracture(s) Vertical fracture(s) <th colspa<="" td=""><td>Nanaimo Dam-Concrete Core Testing (1) Diagonal shear plane(s) (6) Spalling tion: Nanaimo Canocrete Core Testing (1) Diagonal shear plane(s) (6) Spalling D 38 (7) Other (3) Vertical splitture(s) (7) Other Borehole Sample Depth Dia Ht A Vet Drevisitor Vorter (60) spalling Borehole Sample Depth Dia Ht A V Mass Density W Density Load G Rock Type # # (f) (fm) (fm)</td><td>Nanaimo Dam-Concrete Core Testing (1) Diagonal shear plane(s) (5) Conical tion: Nanaimo Concrete Core Testing (1) Diagonal shear plane(s) (5) Conical Nanaimo Concrete Core Testing (2) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (2) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (3) Verical Spalling (7) Other D (4) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (4) Verical Tracture(s) (7) Other D (4) Verical Tracture(s) (6) Spalling Maximum Concrete Core Testing (4) Verical Tracture(s) (7) Other D Depth Date (6) Spalling Maximum Concrete Core Testing (9) Verical Tracture(s) (7) Other Maximum Concrete Core Testing (9) Verical Tracture(s) (9) Verical Tracture(s) (9) Verical Tracture(s) </td></th>	<td>Nanaimo Dam-Concrete Core Testing (1) Diagonal shear plane(s) (6) Spalling tion: Nanaimo Canocrete Core Testing (1) Diagonal shear plane(s) (6) Spalling D 38 (7) Other (3) Vertical splitture(s) (7) Other Borehole Sample Depth Dia Ht A Vet Drevisitor Vorter (60) spalling Borehole Sample Depth Dia Ht A V Mass Density W Density Load G Rock Type # # (f) (fm) (fm)</td> <td>Nanaimo Dam-Concrete Core Testing (1) Diagonal shear plane(s) (5) Conical tion: Nanaimo Concrete Core Testing (1) Diagonal shear plane(s) (5) Conical Nanaimo Concrete Core Testing (2) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (2) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (3) Verical Spalling (7) Other D (4) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (4) Verical Tracture(s) (7) Other D (4) Verical Tracture(s) (6) Spalling Maximum Concrete Core Testing (4) Verical Tracture(s) (7) Other D Depth Date (6) Spalling Maximum Concrete Core Testing (9) Verical Tracture(s) (7) Other Maximum Concrete Core Testing (9) Verical Tracture(s) (9) Verical Tracture(s) (9) Verical Tracture(s) </td>	Nanaimo Dam-Concrete Core Testing (1) Diagonal shear plane(s) (6) Spalling tion: Nanaimo Canocrete Core Testing (1) Diagonal shear plane(s) (6) Spalling D 38 (7) Other (3) Vertical splitture(s) (7) Other Borehole Sample Depth Dia Ht A Vet Drevisitor Vorter (60) spalling Borehole Sample Depth Dia Ht A V Mass Density W Density Load G Rock Type # # (f) (fm) (fm)	Nanaimo Dam-Concrete Core Testing (1) Diagonal shear plane(s) (5) Conical tion: Nanaimo Concrete Core Testing (1) Diagonal shear plane(s) (5) Conical Nanaimo Concrete Core Testing (2) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (2) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (3) Verical Spalling (7) Other D (4) Verical Tracture(s) (6) Spalling Nanaimo Concrete Core Testing (4) Verical Tracture(s) (7) Other D (4) Verical Tracture(s) (6) Spalling Maximum Concrete Core Testing (4) Verical Tracture(s) (7) Other D Depth Date (6) Spalling Maximum Concrete Core Testing (9) Verical Tracture(s) (7) Other Maximum Concrete Core Testing (9) Verical Tracture(s) (9) Verical Tracture(s) (9) Verical Tracture(s)

Un	confined Compressive	Strength of Inta	act Rock Core Spec	cimens	Reference ASTM D7012-10 Method
oject No.:	13-1447-0516		Borehole:	CH14-03	AGTIN DTOTZ-TO Method
oject:	Nanaimo Dam-Concrete Cor	e Testing	Sample Number:	N/A	
cation:	Nanaimo Chase Creek	3	Depth (ft):	31.00-32.50	
lient: City of Nanaimo			Lab ID No:	98	
	o (MPa) 37.2 ate (kN/s) 1.25	Sample M Diameter (mm) Height (mm) Area (cm ²) Volume (cm ³) Mass (g) Moisture Conten Wet Density (Kg/	/m ³) 2596.60		
Type: Degree	Failure Mode 7 s:* <u>N/A</u>	 Water content a Mode: (1) Diagonal she (2) Vertical fractor (3) Vertical splittion (4) Shear along for 	ar plane(s) ure(s)		PROJECT # 13-1447-0516 SAMPLE CH14-03 DEPTH (ft) 31.00-32.50 BEFORE TEST
* Degre core a	es measured with respect t axis.	(5) Conical o (6) Spalling (7) Other			AN A
* The tes	ound clasts, through matrix materia	to the sample prov		SA DE	ROJECT # 13-1447-0516 MPLE CH14-03 PTH (ft) 31.00-32.50
constitutes	s a testing service only. Inte provided u	erpretation of the da upon request.	ata given here may be		AFTER TEST

\\golder.gds\gal\Burnaby\Active_2013\1447\13-1447-0516 Nanaimo Colliery Dams Nanaimo\5.0 Work in Progress\LAB TESTING\UCS - Tensile Testing\UCS\Nanaimo Dam- Bedrock UCS

Annex D Risk Management Plan

DATE February 6, 2014

DOCUMENT NO. 13 1447 0516 No.

- TO Thomas Madden
- CC Vafa Rombough, Jenna Girdner

FROM Bruce Downing, Robert Chu, Grant Bonin

EMAIL rchu@golder.com

INTERIM RISK MANAGEMENT PLAN, COLLIERY DAM, NANAIMO LOWER DAM DRILLING INVESTIGATION

PURPOSE OF WORK

A preliminary geotechnical investigation program of the Lower Colliery Dam in Nanaimo is planned to further address gaps and uncertainties in the existing information available for the Lower Dam. A sketch of the plan and section of the proposed borehole locations is attached. The objectives of the investigation program have been broken out into boreholes planned for the concrete core wall and boreholes planned for the downstream shell.

Concrete Core Wall

Purpose of the investigation is to

- To observe the condition of the concrete core and confirm the possible presence and condition of reinforcement.
- To collect concrete core samples for evaluation of concrete conditions and possible further laboratory strength testing as a basis for assessing the core wall condition and response to earthquake induced deformations.
- To delineate the variation in thickness of the concrete core wall at depth and possibly detect reinforcement near the core holes (this will be done as a separate (later) geophysical survey).

Downstream Shell

Purpose of the investigation is to

- To observe the soil/fill material in the downstream shell and develop a profile of internal layering.
- To collect soil samples for laboratory testing of properties including grain size distribution, moisture content, etc.
- Profile underlying foundation (bedrock or till interface).
- Identify "water table," and other possible variations in water saturation.
- If necessary (dependant on results of surface MASW survey) estimate the p and s wave velocities in the fill material (at one borehole location) – (if needed, this will be done as a separate (later) geophysical survey).

In order to execute the above objective, the scope of the drilling program includes coring three holes in the concrete wall of the lower dam and drilling three boreholes in the downstream shell (see attached sketches for approximate proposed locations). The drilling of both areas will be carried out concurrently by different drilling methods and are discussed further below.

Concrete Core Wall (3-4 field days)

- Drill three core holes to approximately 15 m depth using a diamond drill rig, the hole will be collared in the center of the wall, and the hole will be surveyed during drilling to monitor that it does not deviate out of the interior of the core.
- A geotechnical engineer will be onsite to observe the drilling and carry out in-situ measurements (e.g. core permeability). A structural engineer will carry out visits in order to assess the condition of the core and possible rebar.
- The concrete core will be collected in core boxes and transferred to the Golder warehouse for potential further laboratory testing of strength properties.
- The core holes will be capped and left open for testing at a later date.
- A radar survey will be carried out in one of the core holes to attempt to delineate the thickness of the concrete core wall at depth and possibly detect the presence of reinforcement (this will be done as a separate (later) geophysical survey).
- Upon completion of all testing, the core holes will be sealed with grout with properties as specified by the structural engineer. This will be completed separately at a later date.

Downstream Shell (3-4 field days)

- Drill three boreholes to bedrock (approximately 15 m depth) using a sonic drill rig,
- A geotechnical representative of Golder will be onsite to sample (geotechnical and limited geoenvironmental) and observe and log the condition of the soil.
- The soil samples will be transferred to the Golder warehouse for potential further laboratory testing.
- The boreholes will be completed as follows,
 - Two of the boreholes will be completed with piezometer installations as directed by the Golder field personnel onsite.
 - One of the boreholes will be completed with a 3inch PVC Casing, for a down hole seismic survey (if needed, this will be done as a separate (later) survey).

RISK MANAGEMENT MEASURES

The key dam safety related risks that have been identified are presented below. Prior to implementing any of the Mitigation recommendations, the key personnel listed below shall be consulted.

Identified Risks and Mitigation

Concrete Core Wall

The principal dam safety concerns that will need to be considered in the drilling of these boreholes relates to minimizing damage to the core, which could lead to increase seepage through the core of the dam.

- 1. Risk. The borehole may deviate and not stay within the concrete core
 - a. <u>Mitigation.</u> Survey the borehole, at minimum 5 m intervals to verify that the holes is within the central half of the core (ie a minimum of 0.3 m from the face of the core). If the borehole deviates more than this amount, re-orient the hole, or abandon the hole and re-drill.
- 2. <u>Risk.</u> Borehole instability. If very poor quality concrete is encountered, to such a degree that the stability of the borehole cannot be maintained, borehole collapse may occur which could lead to increased seepage through the core.
 - a. <u>Mitigation.</u> Maintain drilling fluid pressures within the hole to increase stability. Advance casing to stabilize the hole, or grout the borehole is accordance with the procedures below (see Appendix).
- 3. <u>Risk.</u> Loss of drilling fluids excessive loss of fluids may have an adverse impact on the core and on the environment (although losses would be expected to be to the downstream side of the dam, rather than into the reservoir).
 - a. <u>Mitigation.</u> Use lost circulation materials, or grout the hole (in accordance with the procedure in the Appendix) and re-drill the hole.
- 4. <u>Risk.</u> Long term borehole stability in question if, at the end of drilling, it appears that the borehole is not sufficiently stable to remain open until the additional down-hole testing is completed at a later date, there is a risk that the borehole may collapse in the intervening period..
 - a. <u>Mitigation.</u> Provide support to the borehole by means of a standpipe or casing, or grout the borehole is accordance with the procedures below (see Appendix).
- 5. <u>Risk.</u> Concrete damage due to vibrations.
 - a. <u>Mitigation.</u> Use diamond drilling methods, which have minimal vibrations that could cause damage.

Downstream Shell

The principal dam safety concerns that will need to be considered in the drilling of these boreholes relates to minimizing damage to the shell.

- 1. <u>Risk.</u> Borehole instability excess excavation (sand production) results in loosening the dam fills and creation of voids.
 - a. <u>Mitigation</u>. These potential effects will be mitigated by using sonic drilling (a proven method to put down boreholes in coarse granular soils), by advancing casing where needed and by monitoring penetration rates and cuttings production.
- 2. <u>Risk</u> Loss of tooling downhole.
 - a. <u>Mitigation.</u> Where possible, tooling shall be recovered by the use of appropriate retrieval tools. If unsuccessful the hole shall be grouted in accordance with procedures that will be developed specific to the situation.

DISTRIBUTION AND CONTACT IN	Land Line	Cell Phone	
Project Manager – Golder	Bruce Downing	604 296 4350	604 992 2958
Project Engineer – Golder	Jenna Girdner	604 297 2045	778 878 7598
Project Engineer – Golder	Anne Crowley	604 296 2891	604 313 8804
Project Director – Golder	Herb Hawson	604 296 4333	604 240 7923
Golder Site Engineer	Thomas Madden		604 346 5762
Environmental Manager	Mark Johannes		604 376 1737
Environmental Biologist	Steven Henstra		778 269 2482
City of Nanaimo	Dale Lindsey		250 750 4493
City of Nanaimo	Bill Sims		250 714 3568
			250 756 5302
Storm Drainage City of Nanaimo	Dean Robinson		250 758 5222
Dam Safety Section	Scott Morgan	250 387 3263	250 356 0605

APPENDIX

This Appendix provides a procedure for mixing a balanced, stable grout to be used for borehole backfilling operations at the Lower Dam, if necessary.

1.0 BENTONITE HYDRATION

The following procedure will produce a bentonite slurry at 10% solution by weight of water (BWOW), yielding approximately 100 Litres, enough for five batches of grout.

Materials Required:

- 1 x 200 L metal drum (clean);
- 1 x 40 kg bag of dry, powdered bentonite (Baroid Aquagel Gold Seal, see attached);
- Supply of clean water, free of deleterious substances;
- 1 x hydraulic mud mixer;
- 3 x clean and dry plastic or metal bowls (5 L capacity each);
- 2 x 20 L calibrated plastic buckets;
- 1 x electric, variable speed, hand held drill;
- 1 x metal paint mixing paddle, adaptable to hand held drill;
- 1 x electronic scale (5 kg capacity); and
- 1 x mud balance.

Procedure:

- 1. Using the electronic scale, weigh out 10 kg of dry powdered bentonite into the dry bowls and set aside in a dry, protected area. Place the left over bentonite into a plastic bag and seal.
- 2. Using 20 L calibrated buckets, measure out 100 L of water and pour into the drum.
- 3. Place the hydraulic mud mixer to the bottom of the metal drum and run at a high speed setting. The maximum speed should be set such that minimal cavitation is visible through the impeller blades of the mixer. Establish a good flow around the bottom of the drum.
- 4. Slowly add the 10 kg of dry powdered bentonite to the water. It should take a minimum of 2 minutes to add the dry bentonite to the water.
- 5. After all of the bentonite has been added, mix at high speed for 10 minutes.
- 6. Remove hydraulic mud mixer from the drum and clean.
- 7. Measure density of the bentonite slurry using the mud balance (theoretical is 1.055 g/cc).
- 8. Cover drum and move it to a protected area.
- 9. Allow the bentonite to hydrate at least 12 hours before use.

10. Agitate the bentonite slurry for a minimum of 1 minute using the handheld drill and metal paint mixer prior to measuring out for grout mix batching.

2.0 GROUT MIXING PROCEDURE

The following grout mixing procedure will yield approximately 110 L of grout. All percentages are listed by weight of cement (BWOC):

Grout Mix Design: 0.57:1 Water to cement ratio + 1% Super Plasticizer + 1.6% Bentonite Slurry

Materials Required:

- 1 x 200 L metal drum (clean);
- 3 x bags (40 kg each) of Type 10 (GU) cement (see attached);
- Supply of clean water;
- 1 x hydraulic mud mixer;
- 2 x 1 L plastic graduated cylinder;
- 3 x 20 L calibrated plastic buckets;
- 3 x 2 L calibrated plastic buckets;
- 1 x mud balance;
- 1 x Marsh funnel;
- 1 x handheld digital thermometer;
- Supply of pre-hydrated bentonite slurry (as per above); and
- Supply of superplasticizer (BASF Rheobuild 1000, see attached).

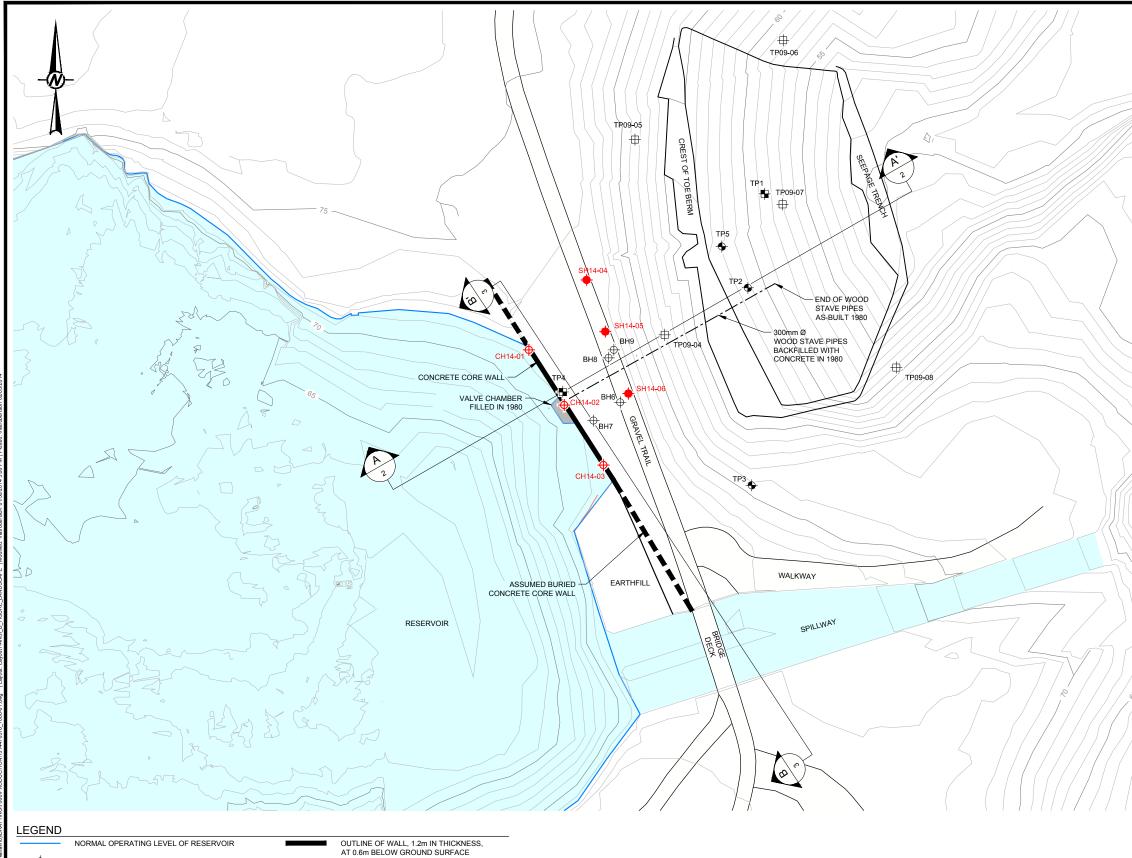
Procedure:

- 1. Measure out 1 L of superplasticizer and set aside.
- 2. Thoroughly agitate the pre-hydrated bentonite slurry for a minimum of 1 minute; measure out 20 L and set aside.
- 3. Measure out 50 L of clean water and add it to the metal drum.
- 4. Place the hydraulic mud mixer to the bottom of the drum and run at its highest speed setting.
- 5. Begin slowly adding cement to the water, noting the viscosity (thickness) of the mixture. As the viscosity begins to increase, add approximately 250 mL of superplasticizer.
 - a. Superplasticizer will have to be added before all the cement is added. Continue adding cement and superplasticizer at the same time until all bags of cement have been added to the mixture. Save approximately 500 mL of super plasticizer and set aside.
 - b. After all 3 bags of cement have been added to the, mix for 2 minutes.

- 6. Begin adding 20 L of bentonite slurry, noting the viscosity of the mixture. As the viscosity increases, add a portion of the remaining superplasticizer to the mixture. Continue adding bentonite slurry to the grout mixture. Add any remaining superplasticizer to the mixture.
 - a. After all 20 L of bentonite slurry and super plasticizer have been added to the grout mixture, mix for an additional 2 minutes.

3.0 BACKFILLING PROCEDURE

- 1) Determine the volume of the borehole based on the current depth drilled. Calculate required amount of grout to fill the hole plus an additional 300 L.
- 2) Establish a grout reservoir using a spare water tub or tank. Mark the grout reservoir in 5 to 10 L increments and note the starting level before pumping begins.
- 3) Plumb a hose line from the grout reservoir to the triplex pump located on the drill.
- 4) Install grout header system between the triplex pump on the drill and the water swivel on the rod string. The grout header system consists of:
 - a. A "tee";
 - b. Three sections of hose connecting:
 - i. Triplex pump to tee
 - ii. Tee to water swivel
 - iii. Tee to return line (goes into the grout reservoir); and,
 - c. Two valves:
 - i. One at the water swivel to control grout flow into the rod string
 - ii. One at the return line to control return speed, which controls the grout injection rate.
 - d. Pressure gauge (reading in Bar or psi) installed at or near the water swivel and at the output of the triplex pump.
- 5) Install grout pressure plug (Van Ruth Type) onto rod string, and lower to required depth.
- 6) Batch an appropriate volume of grout using the procedures described in Sections 1.0 and 2.0 above, and fill the grout reservoir.
- 7) Before pumping of grout can begin, quality control measurements must be taken to ensure the suitability and quality of the grout mixture. These measurements consist of:
 - a. Marsh Funnel Viscosity Measured in seconds. The acceptable range for this is 150 sec ± 20 seconds (to be determined in the field, post-batching).
 - b. Density Measured in grams per cubic centimeter. The acceptable value for the grout described in Section 2.0 is $1.77 \text{ g/cc} \pm 0.02 \text{ g/cc}$.


- c. Bleed Settlement of grout in a 1000 mL graduated cylinder, measured in percent volume. The acceptable value for the grout described in Section 2.0 is < 2.0% after 2 hours.
- 8) Calculate the appropriate pressurization level using the formula 0.2 Bar / meter depth to mid-point of open hole.
- 9) Backfill the hole and pressurize to the value calculated above. During injection, flow rates should not exceed 20 L/min.
 - a. During grout injection, and if multiple batches are required, note the level on the grout reservoir before and after the addition of additional batches of grout to keep track of volumes during injection.
 - b. Consideration should be given to halting backfilling after a total of three well volumes worth of the backfill grout has been injected. Allow the grout to set up overnight and repeat as many times as is necessary to backfill (and pressurize) the interval. It may be necessary to drill out and re-install a Van Ruth plug on each subsequent attempt.
- 10) After grout has been pressurized to the required level, set the grout pressure plug by twisting on the rod string. Note the level on the grout reservoir to obtain the volume grouted.
- 11) Remove the rod string and flush the borehole over the grout pressure plug.
- 12) Allow the grout to set 24 hrs before any drilling operations are to be reinitiated.

Bruce Downing, P.Eng. Principal Grant Bonin, P.Eng. Associate, Mining Geotechnical Engineer

RCC/GRB/rcc/vtr/grb

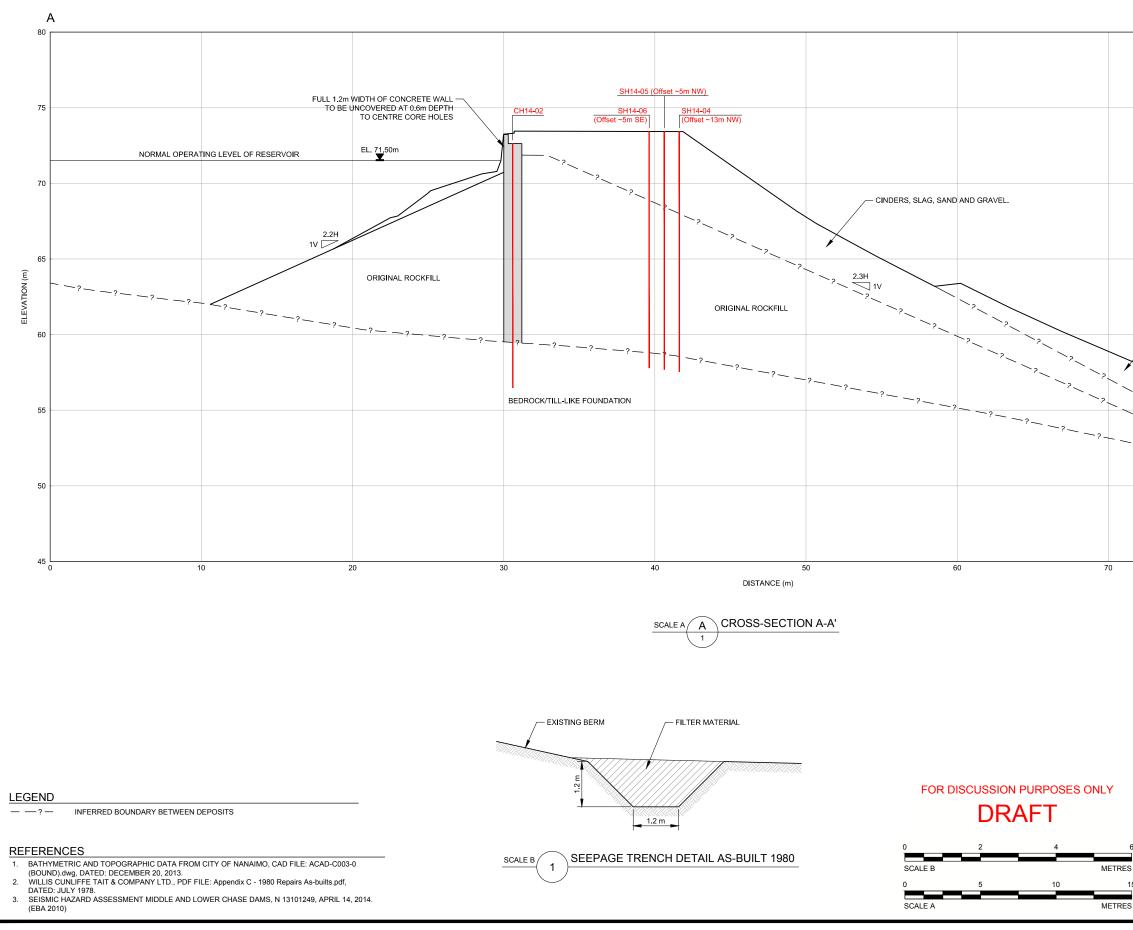
c:\users\bdowning\appdata\local\microsoft\windows\temporary internet files\content.outlook\wwer7d38\emergency grouting procedure_vtr_grb.docx

- \oplus 1978 BOREHOLE (GOLDER)
- 1978 TEST PIT PUT DOWN BY HAND (GOLDER)
- ٠ 1978 TEST PIT PUT DOWN BY EXCAVATOR (GOLDER)
- \oplus 2009 TEST PIT (EBA)

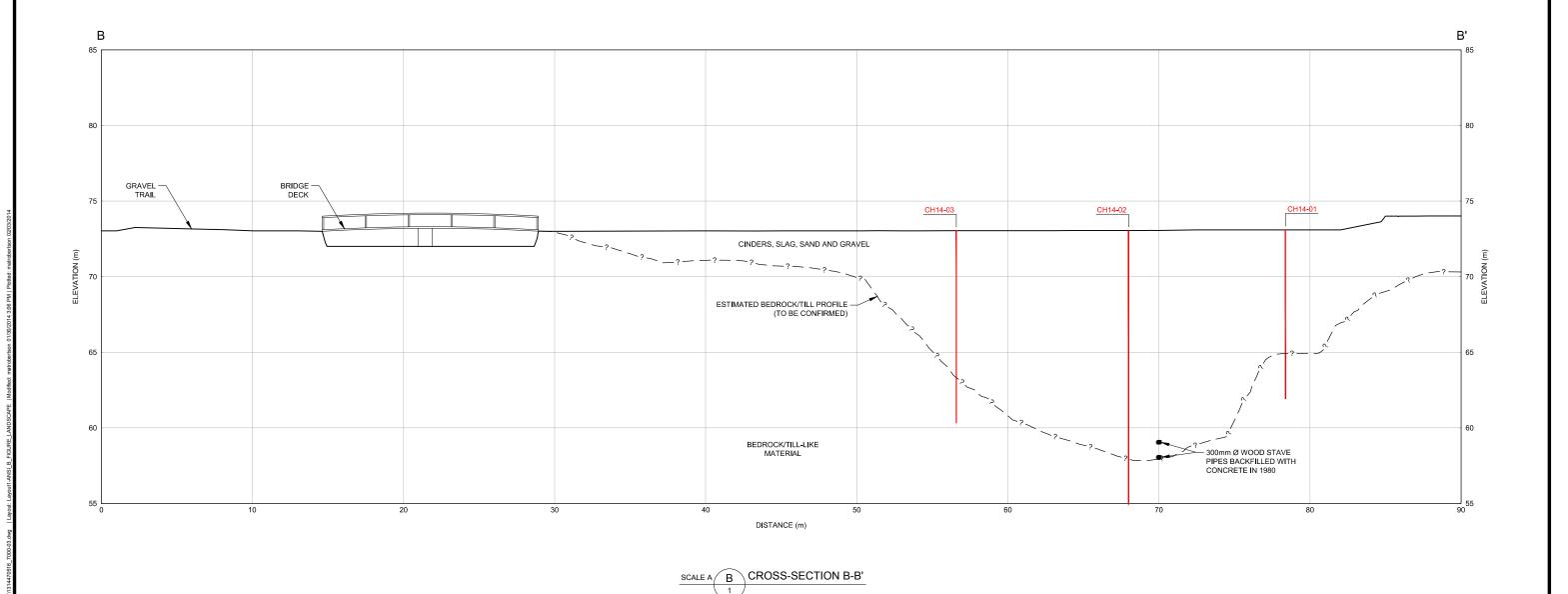
REFERENCES

- BATHYMETRIC AND TOPOGRAPHIC FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, DATED: DECEMBER 20, 2013.
 WILLIS CUNLIFFE TAIT & COMPANY LTD., PDF FILE: Appendix C 1980 Repairs As-builts.pdf, DATED: JULY 1978.
- SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS, N 13101249, APRIL 14, 2014. (EBA 2010)

PROPOSED BOREHOLE (SONIC)


Φ

PROPOSED BOREHOLE (DIAMOND)


FOR DISCUSSION PURPOSES ONLY

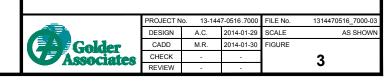
			3			J	
	7						-
		~		ſ		$\langle $	-
				\langle			
			\				
\//////			\sum) //	/ / /
			$\frac{2}{1}$		Ì	//	/ /
)				$\overline{\langle}$		-
		5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
						ru_	/ /
		ر ک				>	
			45				
SB SB	20					55	1111/1/1/
8						60	. / / / / /
					65 -		
2014-01-31	RAFT - ISSUED	FOR REVIEW		A.C.	M.R.	•	
REV DATE PROJECT	CITY C	F NAM		DES	CADD	CHK RV	w
ΤΙΤLΕ	COLL NAN	iery e Aimo,	DAMS B.C.				
PROPOSEI	D BOF LOW	REHO /ER [DLE LO DAM	CATI	ONS	5	
36	PROJECT N DESIGN	o. 13-144 A.C.	7-0516.7000 2014-01-29	FILE No. SCALE	1314470	0516_7000- AS SHO	-
Golder	CADD CHECK REVIEW	M.R. - -	2014-01-30 - -	FIGURE	1		

					A'	
					75	
					70	
					65	~
						ELEVATION (m)
						ELEVAT
_/	/ SAND AND GRAVEL TOE BERM AND FILTER. (AS-BUILT 1980)				60	
\leq						
.2						
``\ `?\	~				55	
?						
	-1		_			
					50	
	SEE DETAIL 3 SEEPAGE TRENCH DETAIL AS-BUILT 1980 (1)					
	80 90				95 ⁴⁵	
	2014-01-31 DRAFT - ISSUED FOR REVIEW REV DATE REVISION DESCRIPTION		A.C. DES	M.R. CADD	- СНК	- RVV
	PROJECT CITY OF NANAIMO COLLIERY DAMS					
	COLLIERY DAMS NANAIMO, B.C.					
6	COLLIERY DAMS	-A'				
	TITLE PROJECT NO. 13-1447-0516.7000 F	ILE No	D.	13144	70516_7	
5	TITLE			13144 2		7000-0 SHOW

LEGEND

— — ? — INFERRED BOUNDARY BETWEEN DEPOSITS

REFERENCES


BATHYMETRIC AND TOPOGRAPHIC DATA FROM CITY OF NANAIMO, CAD FILE: ACAD-C003-0 (BOUND).dwg, DATED: DECEMBER 20, 2013.
 WILLIS CUNLIFFE TAIT & COMPANY LTD., PDF FILE: Appendix C - 1980 Repairs As-builts.pdf, DATED: JULY 1978.

SEISMIC HAZARD ASSESSMENT MIDDLE AND LOWER CHASE DAMS, N 13101249, APRIL 14, 2014. (EBA 2010)

15

FOR DISCUSSION PURPOSES ONLY

	LOWER DAM CROSS-SECTION B-B'								
TITL	E								
PRO	DJECT	CITY OF NANAIMO COLLIERY DAMS NANAIMO, B.C.							
REV	DATE	REVISION DESCRIPTION	DES	CADD	СНК	RV			
\mathbb{A}	2014-01-31	DRAFT - ISSUED FOR REVIEW	A.C.	M.R.	-	-			

APPENDIX F

Appendix F Hydrogeological Investigation of Lower Dam

DATE March 27, 2014

PROJECT No. 1314470516 / 7000 / 7200

то

City of Nanaimo

СС

FROM Robert Chu, Denis Vachon, Michal Dobr

EMAIL Robert_Chu@golder.com; Denis_Vachon@golder.com

2014 HYDROGEOLOGICAL TESTING PROGRAM – COLLIERY DAMS, CITY OF NANAIMO

1.0 INTRODUCTION

Hydrogeological testing program was carried out as part of the 2014 geotechnical field investigations in the area of the Nanaimo Colliery Dam.

This technical memorandum provides a summary and interpretation of the hydrogeological data collected during the program.

2.0 HYDROGEOLOGICAL FIELD INVESTIGATIONS

Hydrogeological testing was undertaken on March 24, 2014 in two boreholes drilled by Cabo Drilling Corp. The boreholes were cored with a nominal diameter of 122.6 mm (PQ). Detailed information on the selected test boreholes such as collar coordinates, borehole inclination, and depth, is presented in Table 1 below.

Borehole Number	Northing [m] ^a	Easting [m] ^ª	Ground Surface Elevation [masl] ^b	Borehole Depth [mab] ^c	Borehole Azimuth [Degrees°]	Borehole Inclination [Degrees°]
CH14-02	5446452.1	430000.5	72.9	20.0	0	90
CH14-03	5446440.7	430007.4	72.9	12.4	0	90

Table 1: Test Borehole Details

Notes:

a = NAD 83

b = metres above sea level.

c = metres along borehole below ground surface.

2.1 Testing Approach

Single-well pressure response tests were carried out in the selected boreholes to obtain information on the hydraulic conductivity of a concrete wall and the underlying bedrock. Testing was conducted with PQ size

pneumatic packer on dedicated 1 ¼" diameter test rods. Schematic diagram of the tool assembly is shown in Figure 1. To perform a test the tool was lowered, and once the packer reached the target depth it was inflated with water isolating the section of the borehole between the packer and the bottom of the borehole at that time. After the test was completed, the packer was deflated and removed from the borehole.

To monitor the progress of the individual test sequences a LevelTROLL 700 memory gauges was placed in a carrier attached below the packer to monitor the pressure response directly in the test interval. The transducer was programmed to collect data in 1 second, interval.

Prior to testing, the water level was measured in each borehole to select the depth for placement of the testing equipment to provide hydraulic conductivity for the saturated portion of each borehole. Based on the water level elevations the test intervals varied in length from 2.4 to 13.9 metres. Table 2 below presents a summary of the tests carried out in the two boreholes.

Borehole ID	Interval Tested [mbgs] ^ª	Number of Tests Conducted	Material Tested	Water level [mbgs]ª
CH14-02	6.1 – 20.0	1	Concrete/Bedrock	2.6
CH14-03	10.1 – 12.4	1	Bedrock	8.8

Table 2: Summary of Hydrogeological Tests

Notes:

a =metres below ground surface.

2.2 Testing Methodology

The following methodology was used for the hydrogeological testing at the Nanaimo Colliey dams project:

- Pressure Static Recovery Sequence PSR;
- Slug Injection Sequence (SI) ;

The following provides detailed description of the individual test sequences.

2.2.1 Pressure Static Recovery

After the testing tool was placed to the desired depth the packer was inflated with water. Following packer inflation, the water table inside the test rods was measured with a water level tape to monitor the response of the aquifer in real time. The pressure static recovery sequence (PSR) was carried out to allow the aquifer within the isolated interval to reach static conditions after packer inflation. This sequence lasted approximately 1 hour. After this time, the next test sequence was initiated, even if full hydrostatic conditions were not achieved in the test interval.

2.2.2 Slug Injection Test

After the PSR sequence, a slug injection (SI) test was carried out. This test sequence consists of adding an instantaneous slug of water into the test rods. After the slug displacement, the water level inside the test rods

was monitored until it recovered to the pre-test level. Slug recovery monitoring continued for a period of time lasting between 30 minutes and approximately 1 hour. After this time the test was terminated even if full recovery was not reached.

2.3 Test Analysis

2.3.1 Software

The test analyses were carried out with *HydroBench*[®] (Version 3.6.4.3), a Golder internally developed software package designed to analyze different types of hydrogeological tests. *HydroBench*[®] is a pressure transient interpretation package using the methodology of the Bourdet Derivative (e.g., Gringarten 2008), coupled with a library of analytical reservoir models. Further information on the *HydroBench*[®] software including a detailed documentation of the verification of the software is available on request.

2.3.2 Results

A summary of the transmissivity and hydraulic conductivity values calculated for the tested intervals is presented in Table 3 below. The hydraulic conductivity values were calculated by dividing the transmissivity value by the length of the corresponding test interval. The table shows the test sequences carried out in each interval such as pressure static recovery (PSR), and slug injection (SI).

Borehole		Interval			Test Seq	uences	Ţ	к
ID	Test	Top [mbgs] ^a	Bottom [mbgs] ^a	Length [m] ^a	Conducted	Analysed	[m²/s]	[m/s]
CH14-02	Test 1	6.1	20.0	13.9	PSR, SI	SI	9 x 10 ⁻⁶	7 x 10 ⁻⁷
CH14-03	Test 1	10.1	12.4	2.4	PSR, SI	SI	3 x 10⁻ ⁸	1 x 10 ⁻⁸

Table 3: Summary of Single Well Test Results

Notes: a = metres below ground surface

Based on the information presented in Table 2, the results of the test conducted in borehole CH14-02 (7 x 10^{-7} m/s) represent combined hydraulic conductivity of a concrete and bedrock, while the hydraulic conductivity derived from the test in borehole CH14-03 (1 x 10^{-8} m/s) represents bedrock only.

Detailed analytical test reports are presented in Attachment A. These reports are computer generated protocols, and some values in these documents might differ from values discussed within the text section of this document.

3.0 RECOMMENDATION

Because of the significant difference between the water levels recorded in borehole CH14-03 and the borehole CH13-02, it is recommended to carry out additional testing in borehole CH14-03 to locate the zone of potential breach in the wall causing the depressed water table at this location.

4.0 CONCLUSION

We trust that the information provided above satisfies your current project requirements. If you have any questions or concerns, please do not hesitate to contact us at your convenience.

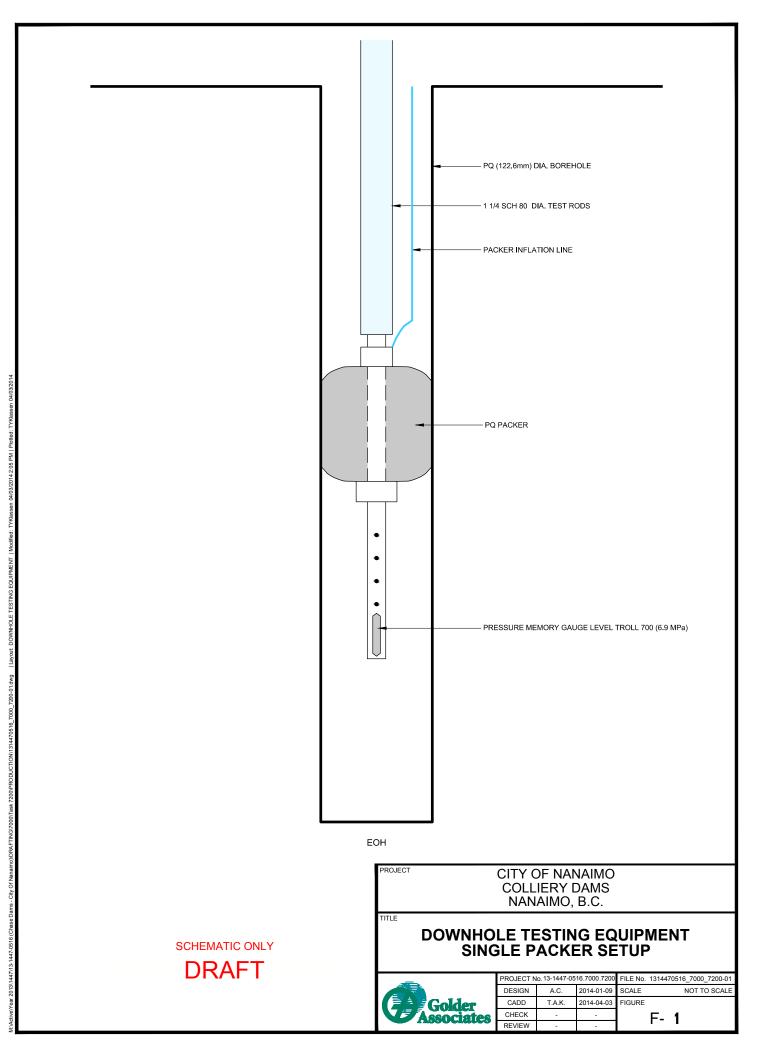
5.0 **REFERENCES**

Horner, D.R. 1951. Pressure Build-Ups in Wells. Proc., Third World Petroleum Congress, The Hague, Section II, 503-523, 28 May – 6 June.

Gringarten AC., 2008. From Straight Lines to Deconvolution: The Evolution of the State of the Art in Well Test Analysis. SPE Reservoir Evaluation & Engineering 11: 41-62.

ORIGINAL SIGNED

ORIGINAL SIGNED


Robert Chu, BaSc., EIT Mining Engineer Mike Dobr, RNDr. P.Geo. Principal, Senior Hydrogeologist

RC/MD

\\golder.gds\gal\burnaby\active_2013\1447\13-1447-0516 nanaimo colliery dams nanaimo\6.0 deliverables\factual report\appendix f hydrogeology investigation\1314470516-nanaimo colliery dams_april2.docx

Attachments: Figure 1: Downhole Testing Equipment – Single Packer Tool Attachment A: *HydroBench*[®] Analysis Reports

ATTACHMENT A HydroBench[®] Analysis Reports Note: These reports are computer generated protocols, and some values might differ from values discussed within the text section of this document.

HYDROBENCH REPORT

Project	CITY OF NANAIMO			
Site	NANAIMO COLLIERY DAMS			
Source Well	CH14-03			
Test Name	Test 1			
Test Date/Time				
Interval	top: 10.10 m	bottom: 12.40 m		
Description				

Basic Data

Test Interval	2.30 m		
Porosity	0.10		
Well Radius	0.061 m	Tubing Radius	0.016 m
Inclination	0.0 deg		
Test Volume	27.152 l		
Well Type	Source		

Fluid Properties

Viscosity	0.001 Pa*s
Density	1000.0 kg/m³
Compressibility	2.0e-09 1/Pa

Sequence Definition

Name	Category	t(o) [hrs]	P(o) [kPa]	P(i) [kPa]	Rate [l/min]	C [m³/Pa]
INF	Variable	0.00000	23.06			8.2e-08
	Pressure					
PSR	Recovery	0.07722	26.68			8.2e-08
SI_Init	dP-Event	0.82333	23.44	-93.6 *		8.2e-08
SI	Slug	0.84556	117.05	23.4		8.2e-08

Analysis Results

Analysis "SI"

Static Pressure: 22.63 kPa

Shell Parameters:

onen i aram								
Name	Transmissivity [m ² /s]	Storativity [-]	Radius [m]	Flow Dimension [-]				
Shell 1	2.8e-08	4.5e-06		2.0				
Sequence Parameters:								
Name	Wellbore Storage [m ³ /Pa	a] Skin [-]						

		•••••••••••••••••••••••••••••••••••••••
INF	5.2e-05	0.0
PSR	5.2e-05	0.0
SI_Init	8.2e-08	0.0
SI	8.2e-08	0.0

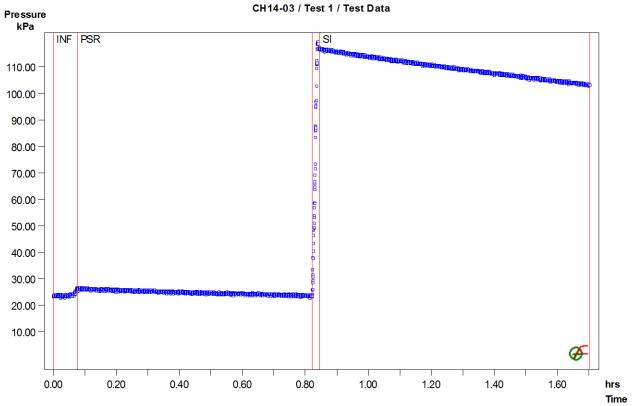


Figure 1: Pressure response and sequence definition

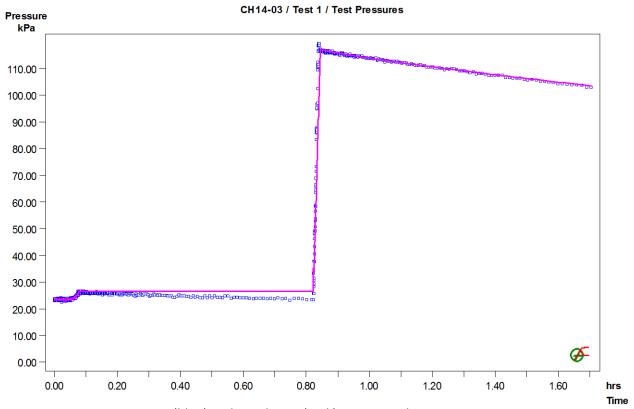


Figure 2: Pressure response (blue) and simulation (pink) cartesian plot Deconv. P CH14-03 / Test 1 / SI: LogLog Plot, variable P(i)

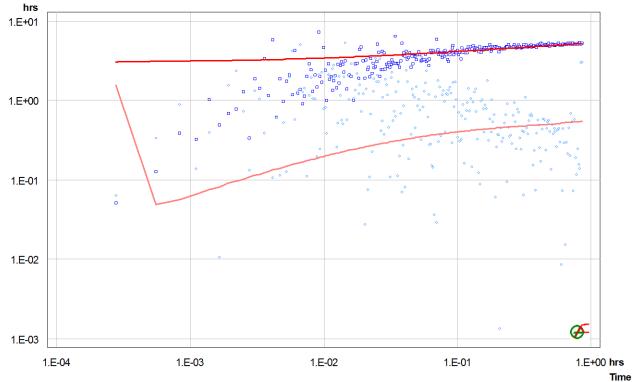


Figure 3: Deconvolved pressure response (dark blue), derivative (light blue) and simulation (red): Log-Log diagnostic plot, SI sequence

HYDROBENCH REPORT

Project	CITY OF NANA	IMO	
Site	NANAIMO COLLIERY DAMS		MS
Source Well	CH14-02		
Test Name	Test 1		
Test Date/Time			
Interval	top: 6.10 m	bottom:	20.00 m
Description			

Basic Data

۱
١

Fluid Properties

Viscosity	0.001 Pa*s
Density	1000.0 kg/m³
Compressibility	2.0e-09 1/Pa

Sequence Definition

Name	Category	t(o) [hrs]	P(o) [kPa]	P(i) [kPa]	Rate [l/min]	C [m³/Pa]
INF	Variable	0.00000	41.91			8.2e-08
	Pressure					
SI-Init-1	dP-Event	0.71583	41.21	-32.9 *		8.2e-08
SI-1	Slug	0.76194	74.11	41.2		8.2e-08
PSR-2	Recovery	0.96639	45.36			8.2e-08
SW-Init-2	dP-Event	1.04889	44.23	-29.2 *		8.2e-08
SI-2	Slug	1.06667	73.40	44.2		8.2e-08

Analysis Results

Analysis "SI-2 2 shell Final"

Static Pressure: 40.92 kPa

Shell Parameters:

Name	Transmissivity [m ² /s]	Storativity [-]	Radius [m]	Flow Dimension [-]
Shell 1	8.8e-06	2.7e-05	4.64	2.0
Shell 2	1.5e-06	2.7e-05		2.0

Sequence Parameters:

Name	Wellbore Storage [m ³ /Pa]	Skin [-]
INF	6.6e-12	0.0
SI-Init-1	8.2e-08	0.0
SI-1	8.2e-08	0.0
PSR-2	6.6e-12	0.0
SW-Init-2	8.2e-08	0.0
SI-2	8.2e-08	0.0

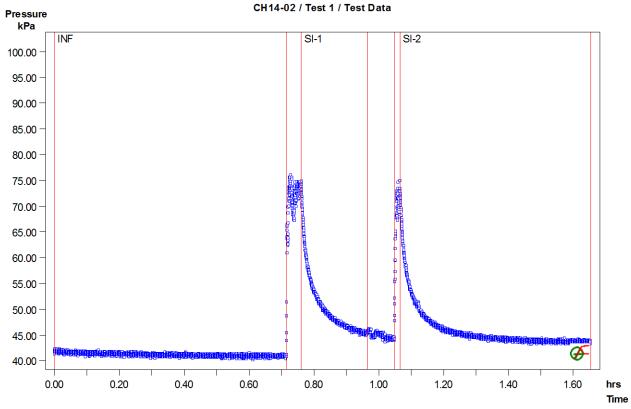


Figure 1: Pressure response and sequence definition

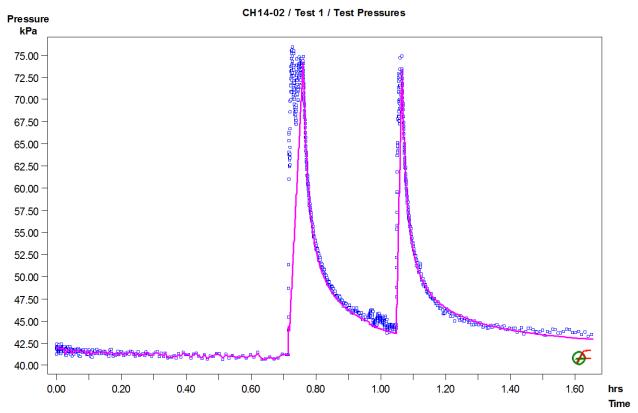


 Figure 2: Pressure response (blue) and simulation (pink) cartesian plot

 Deconv. P
 CH14-02 / Test 1 / SI-1: LogLog Plot, constant P(i)

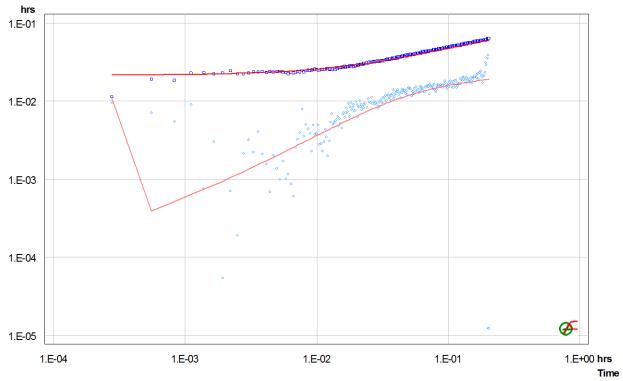


Figure 3: Deconvolved pressure response (dark blue), derivative (light blue) and simulation (red): Log-Log diagnostic plot, SI sequence

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa Asia Australasia Europe North America South America + 27 11 254 4800 + 86 21 6258 5522 + 61 3 8862 3500 + 356 21 42 30 20 + 1 800 275 3281 + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada T: +1 (604) 296 4200

